o odho o
TECHNISCHE UNIVERSITAT
CHEMNITZ

A replication study of the effect of flowcharts
on code comprehension among novice

programmers
Master Thesis

Submitted in Fulfilment of the
Requirements for the Academic Degree

M.Sc. Web Engineering

Dept. of Computer Science

Chair of Software Engineering

Submitted by: Sumaia Darra

Supervisor: Prof. Dr. -Ing. Janet Siegmund
Dr. Norman Peitek

Acknowledgment

First and foremost, | would like to express my deepest gratitude to my esteemed
supervisor, Prof. Dr.-Ing. Janet Siegmund, for her invaluable guidance, continuous
support, and motivating words throughout the course of this thesis. Her insightful
feedback, patience, and encouragement have been instrumental in shaping my

academic journey and overcoming every challenge along the way.

| extend my heartfelt thanks to my beloved husband, Mohammad Muhra, for his
unwavering belief in me and his constant support throughout my entire academic
journey. His encouragement during times of doubt, his faith in my ability to persevere,
and his constant motivation were the light that guided me through every dark and

difficult moment. You have always been my inspiration.

| would also like to pay special tribute to my late grandfather, Nizar Sosan. He was an
incredible source of support for my academic aspirations from my earliest school days
until his last moments. His words, “Pursue knowledge with passion and determination,
| am always proud of you.,” resonate deeply with me and continue to be a source of

strength.

Despite the distance between us, | would like to express my sincerest gratitude to my
dear mother for her countless sacrifices, unconditional love, and continuous

encouragement. Your kind words have always stayed with me.

Furthermore, | extend my deepest gratitude to my family. Their unwavering support,
love, and encouragement have always been my greatest source of strength. | am also
sincerely thankful to my in-laws for believing in me and for supporting me throughout

my academic journey.

This thesis represents not only an academic milestone but also a personal journey of
growth, perseverance, and self-discovery. Every challenge | faced along the way
became an opportunity to learn, grow stronger, and to believe in my capabilities. | am
proud of how far | have come and remain committed to continuous learning and

personal development.

Abstract

Program comprehension is a fundamental skill in computer science education, yet
novice programmers often find it difficult to develop accurate mental models that link
problem specifications to effective program solutions. Visual aids such as flowcharts
have long been suggested as a way of supporting algorithmic thinking and improving
comprehension. This study presents a controlled replication of an earlier experiment
that investigated the effects of flowcharts on code comprehension of novice
programmers. The primary goal was to validate the original findings under similar
conditions while exploring potential differences arising from new participants and
contextual factors. A within-subjects experimental design was employed, in which
participants solved programming comprehension tasks using code snippets alone and
with code snippets accompanied by flowcharts. Eye-tracking technology, EEG devices,
and well-designed interviews were used to provide a multi-modal analysis of visual
attention, cognitive load, response time, comprehension correctness, and subjective
preference. The results showed that participants actively used flowcharts while
completing the tasks and consistently said that they would prefer them to be included
in introductory programming courses. This aligns with the original study's subjective
findings. However, no statistically significant improvements in comprehension or
response time were observed between the two conditions. This contradicts the original
study's findings of improvements in both areas when flowcharts were present.
Cognitive load measures also showed no significant differences, which reinforces
previous findings. The persistent preference for flowcharts suggests that, while they
may not directly enhance performance metrics, they could provide novice
programmers with perceived cognitive support or psychological reassurance. The
challenges encountered during this replication include a different pool of participants,
a small sample size, minor technical updates, and limited access to the original
researcher. These issues are consistent with the replication crisis observed in the
behavioral sciences, emphasizing the need for careful documentation, broader
replication initiatives, and standardized protocols within empirical software research.
In conclusion, although flowcharts cannot guarantee measurable improvements in
novice code comprehension on their own, integrating them into programming

education can enhance the learning experience. Therefore, they should be considered

2

a useful pedagogical supplement. Future research should involve larger and more
diverse samples of participants, explore alternative visual aids and adopt longitudinal
designs to evaluate the long-term impact of algorithmic visualizations on learning

outcomes.

Keywords: Replication Study, Program Comprehension, Novice Programmers,
Flowcharts, Cognitive Load.

Contents

ACKNOWIEAGMENTt e e e e e e et e e e e e et e e e eaaa e 1
Y o153 = T PRSP PP PP PPPPPPPPPPPP 2
LiSt Of FIQUIES ... et e e e e e e e e e e e e eeeeanaaas 7
LISt Of T@DIES ... 8
LiSt Of ADDIEVIAtIONSuuiiiiiii s 9
T INEFOAUCTION ..ottt 10
1.1 Problem Statement 11
1.2 ODJECHIVE ..ot 12
1.3 TRHESIS STIUCIUIE ... 13
1.4 Overview of the Original Study............ccooiiiiiiiii e 14
1.4.1 Results of the Original Studycooviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 17

2 Literature ReVIBW ... 18
2.1 Program ComprehensioNuuiiiiiiiiieeee e 18
211 Program Comprehension Strategies.............oeevviiiiiiiiiiiiiiiiiiiiiiiiiiiieee 19
2.1.2 Top-Down Comprehensioncceeeiiiiiiiiiiiiicce e 19
21.3 Bottom-Up Comprehensioncooiiiiiiiiiiiiiiiieee e 20
214 Hybrid Program-Comprehension Strategiescccevvvvviiieeeeeeee. 21

2.2 Approaches to measure Program Comprehensionccceevvvvveeeeeeeenn. 22
221 Task Performance. ... 22
222 INTEIVIEWS ... 22
223 Subjective RaNKINGuuuuumiiii e 23

2.3 New approaches to measure Program Comprehensionccccccco.oooo. 23
2.3.1 EYE TraCKiNg ... oo 23
23.2 Electroencephalography ... 25

2.4 NOVICE Programmersooouuuuiiiie e e e e e e e e e e e e e e e e e 28
2.5 Related WOrK ... 30
2.5.1 Flowchart TOOIS OVErVIEW...........cceviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 30

2.6 Replication StUAYccooiiiiiiie e 35
2.6.1 Challenges in Conducting Replication Studies..........cccccccceeiiiiieeninnnnnn. 36

4

2.6.2 Types of RepliCationS........ccoiieiiiiiiiiiice e 36

2.6.3 Replication in Computer SCIENCEcoeiiiieiiieeeceee e 37

B TN \Y 11 1 o o To (o] (oo | 2RISR 38
0 T T | RS 38
3.2 Modifications to Experimental Material..............cooooviiiiiiiiiiiicee e 39
3.3 Independent Variable ... 40
3.4 Dependent Variables...........oouuuiiiiii i 40
3.5 HYPOINESES ... 41
3.6 PartiCipantsooouiiiii e 42
3.7 Confounding FacCIOrS.........ooouiiiiiii e 43
3.8 Experiment Materialoouuiiiiiiiii e 45
3.8.1 Code Snippet Selectioneeiiiiiiiiiiccee e 45
3.8.2 Pre-questionNaire...........coioiiiiii i 46
3.8.3 Post-QUESHIONNAINE ... 49

3.9 TASKS i 51
3.10 EXperiment DeSIGN.......cuuiiiiiiiiiiiiiiiiiiiiieeeeeee ettt 55

K 20t I B I To - ST P P PP P PPPPPPPPPPPPPPPN 56

3 A1 BYE TraCKe ... e 56
B11.2 EEG i aeeae s 57
3113 PSYCNOPY ... 57
3114 SOSCI SUIVEY ... e 58
3.12 Ethical Considerations and Academic Integrityccoooiiiiiiiiiiiinn e 58
OO0 o |1 o PP PPPPPPPPPPPP 59
4.1 Participants DemographicCscoov i 59
4.2 PrOCEAUIE ...ttt ettt ettt 60
4.3 Data CollECHON.....uuuiiiiiiiiiiieee e 63

5 Data Analysis and ReSUIScoooiiiiiiii e 64
5.1 Data Preparation ... 64
51.1 Time and Correctness Data Processingcccccoeeeeiiiii, 64
5.1.2 Eye Tracking Data ProCessing.........ccooovviiiiiiiiiiiiie e 65

5

5.1.3 EEG Data ProCesSiNguuciiiieiiiiieeee et 65

514 Data Cleaningoueiiiiiiiiiiiiiiiiiieeiee et 66

5.2 Descriptive StatistiCScooviuiiiiiii i 66
5.2.1 Eye Tracking Data ReSuUlts ... 66
5.2.2 Response Time, Correctness and Cognitive Load Results.................. 68
5.2.3 Post Interview RESUILSoooviiiiiiiiiiiiiieeeee 70

5.3 Hypotheses TeSHNGcoouiiiiiiiiiiiiiiiiiiiiieeieeeeee e 73
5.4 Answer to Research QUEeSHoNuuiiiiiiiiiiiii e 75

B DISCUSSION ... 77
6.1 Visual AMENLIONooiiiiiiiiiiieeeeee e 77
L == o o] o ST TN T o = 81
6.3 COMECINESS.....eeiiiiiei ittt e e e e e e e e e e e e e e 82
6.4 Cognitive LOAMuueiiiiiiiieee e 83
6.5 Flowchart Preferences ... 84
6.6 Threadsto Validityccooeiimiiiii e 85
6.6.1 Construct Validity ... 85
6.6.2 Internal Validityccooooiiiii e 86
6.6.3 External Validityooouimei 87

7 CONCIUSION .. 88
7.1 FUIUIE WOTK .ot 90
BIDlIOGIraPNY ... 91
SelbststandigkeitSerkIarung..........ooo o 100

List of Figures

Figure 1.1 Demographic overview of the original study..............ccccooiiiiiiiiiiiiiiis 15
Figure 1.2 Pre-questionnaire used in the original studyccccoooiiiiiiiiiiiiiiieeen. 16
Figure 1.3 Post-questionnaire used in the original study............ccoooviiiiiiiiiiiiieeennnnn. 16
Figure 2.1 Heatmap visualization over a code snippet with Flowchart 24
FIQUIE 2.2 EEG CaP ettt 26
Figure 2.3 EEG Signal bands...........cooiiiiiiiiiiee e 27
Figure 2.4 Configuration of an observed EEG signal including biological artifacts.....28
Figure 2.5 An example of a RAPTOR flowchartcccooiiiiiie 33
Figure 2.6 The Progranimate programming environment.............cccccoeeiiiiiiiinnnnnnnns 34
Figure 3.1 The comprehension task. ..., 52
Figure 3.2 Answer Options for the Comprehension TasK............ccccoevvvviiiiiiiieeiiennnnns 53
Figure 3.3 Comprehension task Code snippet with Flowchartoooovieeiis 54
Figure 3.4 Positioning the participant and the eye tracker...............cccoooiiiiiiiiiiiiiinns 56
Figure 3.5 CGX EEG HeadSEtuueeiiiieeeee et 57
Figure 4.1 EEG-Signals and Calibration..............ccccoooiiiiiiiiiii e, 61
Figure 4.2 Eye Tracker Calibration............... e 62
Figure 4.3 Overview of the Experimental Procedure.cccccceiiiiiiiiiiiiieeccceens 63
Figure 5.1 Time Response Distributionscooiiiiiiii e, 69
Figure 5.2 Task Accuracy across Algorithms. ..o 69
Figure 5.3 Cognitive Load DistribUtions. ... 70

List of Tables

Table 3.1 Standard SymDbOISooiiiiiiiiiiiiiiiiieeeeeeee 54
Table 4.1 Participants DemographiCs.coouuiiiiiiiiiicee e 59
Table 5.1 Fixation Time ReSUItScoiiiiiiiii e 67
Table 5.2 Distribution of Fixation Time across Participants.ccccveiiiiiiiinnnnen. 67
Table 5.3 Correctness, Response Time and Cognitive Load Results 68
Table 6.1 Usage Patterns of Flowcharts.ceeoiiiiiiiiiic e 80

List of Abbreviations

AOI
BACCII
Ccsv

EEG

EPU

FITS
FLINT

ICA

IDE

Opal
PsychoPy
RAPTOR
SDK

SFC
SOSCISurvey
STEM
TAR

UML

Area of Interest

Ben A Calloni Coding for Iconic Interface
Comma-Separated Values

Electroencephalography

External Processing Unit

Flowchart-based Intelligent Tutoring System
Flowchart Interpreter

Independent Component Analysis

Integrated Development Environment

Online Platform for Academic Learning
Psychological Experiment Software

Rapid Algorithmic Prototyping Tool for Ordered Reasoning.
Software Development Kit

Structured Flow Chart Editor

Survey System for Social Science Research
Science, Technology, Engineering, and Mathematics

Theta-to-Alpha Ratio
Unified Modelling Language

1 Introduction

Since the inception of computing, software systems have progressively advanced from
basic sequential programs to sophisticated, large-scale distributed applications
capable of real-time operations. As software engineering established itself as a distinct
academic discipline during the late 1960s [1], one of its fundamental challenges has
consistently been the comprehension of source code, particularly code written by
others. Mastery of program comprehension is integral to numerous aspects of software
development, such as software maintenance, debugging, and effective team
collaboration. Consequently, enhancing the understanding of program comprehension
remains a critical objective of ongoing academic research and instructional
methodologies. Over the past few decades, researchers have explored how software
developers read, interpret, and mentally represent source code. This line of research
has contributed to the development of influential theories, including top-down and
bottom-up comprehension models [2], [3], mental model frameworks [4], and the use

of visual aids to support cognitive processing during code analysis [5], [6].

Despite continuous advances in programming environments and analysis tools,
empirical studies consistently report that developers still spend a significant amount of
time trying to understand existing code [7], [8]. As a result, improving code
understandability has become a central goal in software engineering. In parallel, the
global demand for computer science education has increased significantly [9],
positioning program comprehension as a critical learning objective in introductory
programming courses. However, many novice students continue to face challenges in
constructing accurate mental models of code, limiting their ability to solve problems
effectively and produce correct programs. These difficulties highlight the need for
teaching strategies that bridge the gap between syntax and conceptual understanding.
Even experts often report difficulties in teaching programming, which requires carefully

designed curricula that go beyond traditional methods [10].

Many educational approaches have been explored to improve the learning experience

in introductory programming courses. However, individual empirical studies may not

provide generalizable findings. As a result, replication studies are increasingly being

used to validate and verify the effectiveness of educational tools and teaching
10

strategies for novice programmers. In line with this, Bennedsen and Caspersen
highlighted the need for reliable, data-driven evidence to guide decisions in computing
education. In their study, they examined the success and failure rates of students in
first-year programming or computer science courses at the university level. Their
results did not indicate a major issue or an alarmingly high failure rate among students
in these courses. However, the small number of participants limited how broadly their

results could be applied [11].

1.1 Problem Statement

Despite the increasing global emphasis on computer science education, a significant
number of students continue to struggle with introductory programming courses.
Studies have shown that approximately 30% of students enrolled in computer science
programs drop out within the first year, and less than half complete their degree

requirements [12].

These alarming statistics are closely related to the challenges faced in introductory
programming courses, where students must simultaneously develop multiple skills
such as syntax mastery, problem solving, and algorithmic thinking. Moreover, learning
to program is widely recognized as a cognitively demanding process. Novice learners
often struggle to grasp the structural and semantic aspects of programming languages
and find it even more challenging to design functional solutions to given tasks [13].
Furthermore, teachers may also misjudge students' conceptual difficulties, limiting their

ability to provide appropriate support when needed [13].

In addition, many students fail to build accurate mental models of program behavior,
which are essential for meaningful understanding and long-term retention [14].
Research suggests that without such models, students are likely to rely on superficial
patterns or misconceptions, leading to poor academic performance and increased
frustration [15], [16].

The combined effect of high cognitive load, trustable tools and abstract theoretical
content can severely hinder students' learning progress [17]. These barriers highlight
the need for efficient tools and teaching strategies that go beyond traditional lecture-

based formats.

11

Previous studies have produced mixed results, often limited by small sample sizes and
narrow context [18], [19]. To address this gap, there is a growing interest in conducting
replication studies that re-examine previous findings with larger and different groups of

participants.
1.2 Objective

Program visualization is regarded by numerous authors as a way for developing
accurate mental models. Tudoreanu et al. stated that visualization is one of the most
common approaches used by students to enhance learning by creating a mental image
of how things work [20]. Interactive visualization technologies, as an active learning
method, increase the engagement between the learner and the subject matter [21].
Zimmermann et al. conducted a study over three years with pharmacy students,
employed both quantitative and qualitative methods to assess the effectiveness of
flowcharts in enhancing student learning. The study concluded that flowcharts offer a
valuable alternative approach to teaching complex content. They enable students to
organize and summarize information, thereby promoting meaningful learning [22].
Levy et al. observed that visualization offers a concrete model of execution essential

for all students to comprehend algorithms and programming [23].

Flowcharts are a type of diagram that visually represents the logical flow of a process
or algorithm using standardized symbols and arrows to indicate the sequence of
operations. Programmers commonly use it to illustrate control structures, e.g., loops,
decisions, and sequences, thereby simplifying and communicating complex logic.
However, Shneiderman and Mayer noted that flowcharts may be an aid tool in some
situations and a hindrance in others [3].

The original study conducted at the technical university Chemnitz in 2022 aimed to
explore how novice programmers use flowcharts as a support tool for understanding
programs. The effects of flowcharts were assessed in terms of visual attention,
cognitive load, response time, comprehension accuracy, and interview responses. In
the context of programming instruction, flowcharts have been proposed as effective
visual tools to support novice learners in understanding program logic [24]. By
replicating the original study under comparable conditions, this study aims to evaluate

the robustness and generalizability of its findings. This will help to validate earlier

12

conclusions and extend our understanding of how visual aids, specifically flowcharts,
can support novice programmers in comprehension tasks. While this study follows a
direct replication model, minor adjustments have been made to address logistical
constraints and improve procedural clarity. These modifications are detailed in the
methodology and experimental design sections. The main objective of this study is to
replicate the verify the findings of the original study and assess the effectiveness of
flowcharts as a cognitive aid in code comprehension among novice programmers. This

research aims to:

e Examine whether the use of flowcharts improves code comprehension accuracy
in novice programmers.

e Investigate the impact of flowcharts on response time during code-related tasks.

e Assess the effect of flowcharts on perceived cognitive load.

e Explore how and to what extent novice programmers actively use flowcharts
during comprehension.

e Either verify the findings of the original study or identify new challenges under

similar experimental conditions.

RQ: Can the impact of flowcharts on novice programmers’ code comprehension be

verified in a replication study conducted under similar experimental conditions?
1.3 Thesis Structure

This thesis is structured in a way that mirrors the research process, with a logical
progression of chapters. Each chapter builds on the previous one to create a coherent

and comprehensive study. The present study is structured as follows:

Chapter 2 (Literature Review): This chapter establishes the theoretical background
necessary to understand the research problem. It discusses core concepts such as
program comprehension theories, cognitive strategies of novice programmers, and
various approaches to measuring comprehension. In addition, the use of algorithm
visualizations, particularly flowcharts, and their role in computing education are
examined. The chapter concludes with a review of related work and previous

replication efforts in software engineering.

13

Chapter 3 (Methodology): The methodology chapter details the experimental design
used in this replication study. It outlines the variables, hypotheses, materials, and tools
employed, including eye-tracking and EEG devices. It also describes the participant

selection, task structure, and operational definitions to ensure clarity and replicability.

Chapter 4 (Conduct): This chapter describes the practical implementation of the
experiment. It explains the step-by-step procedure used to conduct the study, including

participant recruitment, task administration, and data collection methods.

Chapter 5 (Data Analysis and Results): After data collection, this chapter presents
how the data were prepared, cleaned, and analyzed. It includes both descriptive and
inferential statistics, focusing on fixation time, cognitive load, response time,
correctness, and subjective preferences. A direct comparison to the results of the

original study is also provided.

Chapter 6 (Discussion): The discussion chapter interprets the results considering the
research question and objectives. It evaluates the significance of the findings, identifies
consistencies and deviations from the original study, and addresses the implications.

This chapter also outlines threats to validity that may have influenced the results.

Chapter 7 (Conclusion and Future Work): The final chapter summarizes the main
contributions of the study and revisits its objectives and research questions. It reflects
on the limitations and challenges of conducting replication research, especially in
educational and empirical software engineering contexts. Directions for future research
are proposed, including methodological improvements and broader replication
strategies.

1.4 Overview of the Original Study

The original study, entitled "The Effect of Flowcharts on Novice Programmers' Code
Comprehension”, was a master's thesis conducted at Chemnitz University of
Technology in 2022. The primary objective of the study was to investigate the role of
flowcharts as a visual aid in improving novice programmers' code comprehension. The
research looked at key factors such as visual attention, cognitive load, reaction time,
correctness and subjective preference. The following data were extracted directly from
the original study in order to provide a clear overview and to enable comparison with

the findings of this replication study [24].
14

The experiment used a within-subjects design involving 11 participants. Each
participant completed a total of 14 tasks: 7 using code snippets alone and 7 code
snippets accompanied by flowcharts. All tasks were written in Java. The participants
had 3 to 5 years of academic programming experience, with only two participants
having up to 1.5 years of professional programming experience. Most participants had
little or no experience with flowcharts. The demographics of the participants from the

original study are summarized in Figure 1.1.

Male 7
Female

Age (in years) 26+3
Learning Programming (in years) 4+
Professional Programming (in 05+1
years)

Java Programming (in years) 21
Flowchart Experience 05405

Figure 1.1 Demographic overview of the original study [24].

The order of the tasks was randomized to minimize learning effects. During the
experiment, participants’ visual behavior was tracked using an eye-tracking device,
and cognitive load was measured using an EEG headset. Prior to the tasks,
participants completed a prequestionnaire assessing their experience with
programming and flowcharts. After completing the experiment, a post-questionnaire

and an interview were conducted to gain insight into their strategies and preferences.

The study was announced in computer science classrooms and social media groups.
Students who wished to participate booked an appointment online, then received an
automated email with a brief description of the experiment and relevant information.
Participants completed a pre-questionnaire to collect demographic information. Figure

1.2 shows the prequestionnaire given in the original study.

Participants received general instructions and a brief explanation of the flowcharts.
They then completed two mock tasks: one containing a source code only and another

one containing both a source code with a flowchart. After that participant began the

15

experiment, which included problem-solving tasks in the Java programming language.
They were asked to determine the output of the provided snippet, in the next slide four
answers were given with a skip option. Each task was followed by a 10-second cross-

fixation rest period.

e How long have you been programming for educational purposes? (In years):

e How long have you been programming professionally? (In years):

e How do you estimate your programming experience on a scale from 1 to 10?

e How do you estimate your programming experience compared to fellow
students and experts with 20 years of a practical experience on a scale from 1
to 57

e How do you estimate your experience using flowcharts to visualize or design a
program on a scale from 1 to 5?

e How experienced are you with the following programming languages on a
scale from 1 to 5?7 Java, C, Python, JavaScript.

e How many additional programming languages do you have moderate
experience with?

e How experienced are you with the following programming paradigms on a
scale from 1 to 5?7 Functional programming, Object-oriented programming,
Imperative programming, Logical programming

Figure 1.2 Pre-questionnaire used in the original study [24].

The experiment lasted 30 minutes. The experiment ended either upon completion of
the 14 tasks or after 30 minutes. At this point, participants were asked to take partin a
post-questionnaire interview to gain a better insight into their overall experience and to
identify their preferences regarding the use of flowcharts as reported in the study. The

post-questionnaire questions are shown in Figure 1.3.

e How did you solve the tasks?

¢ Did you use a specific strategy to solve the tasks?

e How much did you refer to the flowcharts and how much to the code?

e For which task did you spend more time, when there was a flowchart present
or not?

e Do you prefer tasks where the flowchart was present or not?

e Do you think there is an advantage or disadvantage when the flowchart is
included along with the code? Why?

Figure 1.3 Post-questionnaire used in the original study [24].

16

1.4.1 Results of the Original Study

The results showed that participants made frequent use of flowcharts and showed
improved correctness on tasks where flowcharts were present. Eye-tracking data
confirmed that participants actively directed their gaze to the flowcharts throughout the
tasks, indicating that these visual aids were indeed used in the comprehension
process. However, response times were longer and no significant differences in
cognitive load were found. Subjective feedback indicated that most participants
preferred the presence of flowcharts, suggesting that they were useful in aiding

comprehension.

Despite the promising results, the original study had several limitations that may have
affected the internal and external validity of the findings. The small sample size limited
statistical power and generalizability. In addition, individual differences in familiarity
with flowcharts and Java syntax may have introduced variability into the results. The
use of physiological measures, while informative, also presented technical challenges
that could affect the accuracy of the data. These threats to validity highlight the need

for replication under more diverse conditions.

These findings highlight the potential of flowcharts to enhance mental model formation
in novice programmers. However, given the limited sample size and scope, the original
author emphasized the need for replication studies to verify the generalizability of these
findings [24].

17

2 Literature Review

The purpose of this literature review is to provide a conceptual and empirical basis for
the current study by examining relevant research on program comprehension,
strategies, approaches to visual aids used in training (e.g. flowcharts) and the cognitive
challenges faced by novice programmers. In addition, the technical characteristics of

eye tracking and EEG equipment are discussed.

21 Program Comprehension

Understanding source code is a core cognitive activity in software development and
maintenance. Since the 1980s, researchers have studied how programmers read,
interpret, and mentally represent code, with the aim of uncovering the cognitive
strategies that developers use when interacting with software systems [2],[25].
Program comprehension refers to how developers make sense of existing code,
including the structure of components, their relationships, functionality, and dynamic
behavior [26].

It involves forming a mental model of the system's purpose and structure, which is
essential for tasks such as debugging, maintenance and evolution. Several studies
have shown that developers spend a significant amount of time trying to comprehend
code. It has been estimated that up to 58% of developers' time is spent understanding

code, highlighting its critical role in effective software development [27].

According to Siegmund, this proportion has remained largely unchanged for decades
despite advances in development tools, largely due to the increasing complexity of
modern software systems. Siegmund also notes that the stagnation of comprehension
research since the mid-1990s has led to a lack of rigorous evaluation of tools and
techniques, which may contribute to the proliferation of poorly validated features that
offer limited practical support to developers [8]. In addition, program understanding is
particularly challenging in collaborative environments, where comprehending code
written by others is often required. Developers must efficiently construct mental
models; cognitive representations built from experience and pattern recognition to
navigate unfamiliar code and solve complex problems [28]. While program
comprehension remains a critical cognitive process in software engineering, current
18

challenges including increasing system complexity and insufficient tool evaluation
highlight the continued need for empirical research and replication studies to support

developer, novices, educator performance and comprehension efficiency.

2.1.1 Program Comprehension Strategies

The Mental Model Framework provides a basis for understanding how developers
cognitively process source code during program comprehension. Building on this
understanding, the top-down, bottom-up and integrated models offer complementary
strategic perspectives for approaching comprehension tasks. Together, these
strategies, when integrated with the mental model framework, provide a
comprehensive view of how developers approach the challenges of program
comprehension, offering insights into both their cognitive processes and practical
strategies.

2.1.2 Top-Down Comprehension

The top-down comprehension model is a hypothesis-driven strategy in which
developers use their domain knowledge and experience to form high-level
assumptions about the purpose of a program. This approach was extensively studied

by Brooks and later extended upon by Soloway and Ehrlich [2], [25].

Brooks proposed in theory that program comprehension begins with a high-level
hypothesis, which is then refined through sub-hypotheses in a hierarchical manner
moving from general abstractions toward concrete code elements. This iterative
refinement helps the programmer systematically narrow down their understanding,
ultimately forming a mental model of the program’s behavior. A key concept in Brooks'
top-down model is the use of beacons, distinctive patterns or cues in the code that
signal specific structures or operations. These beacons help the developer to navigate
and interpret the code efficiently [2].

Similarly, Soloway and Ehrlich introduced the notion of programming plans,
stereotypical fragments of code that represent common routines or goals. These plans,
often used by experts, allow them to associate segments of code with higher-level
intentions [29]. Their work suggests that top-down understanding is primarily
accessible to expert programmers, who can form accurate hypotheses based on their

familiarity with code structures and domain-specific knowledge. This strategy tends to

19

be less cognitively demanding than the bottom-up approach, as it allows programmers
to interpret individual code statements in the context of a broader conceptual

framework.

As a result, experienced developers typically prefer top-down comprehension when
solving tasks [30]. Although beacons are generally considered to be helpful,
Wiedenbeck's research revealed a potential downside: if beacons are inaccurate or
misleading, they can lead readers to draw incorrect conclusions, significantly impeding
comprehension [31]. This dual role highlights the importance of designing code with

clear, consistent cues to aid comprehension.
2.1.3 Bottom-Up Comprehension

The bottom-up comprehension model describes how a programmer builds
understanding by starting at the lowest levels of abstraction such as individual code
statements or basic control structures and gradually combining them into higher-level
concepts. This approach is particularly useful for novice or inexperienced developers,
who may lack the experience to generate top-down hypotheses effectively. Without a
pre-existing mental model, these programmers must examine the code directly to infer

its function and build understanding incrementally [32].

A fundamental cognitive mechanism underlying this strategy is chunking, a concept
introduced by Miller in 1956. Chunking refers to the grouping of small pieces of
information into meaningful units to improve memory and comprehension. Miller
showed that working memory has a limited capacity, about seven items, plus or minus

two, emphasizing the importance of organizing information efficiently [33].

This principle provided the basis for early cognitive models of programming behavior.
Schneiderman and Mayer extended Miller's work to software comprehension,
illustrating how programmers’ abstract fragments of code into semantic chunks that
are temporarily stored in working memory. These chunks, which may represent
syntactic patterns or conceptual operations, are then processed using prior knowledge
stored in long-term memory. This process allows developers to associate isolated
pieces of code with more abstract goals or structures, enabling higher-level

comprehension [3].

20

Building on this framework, Pennington emphasized that bottom-up comprehension
begins with the identification of basic control constructs, such as sequences, loops,
and conditionals, which serve as the fundamental units for chunking. These control
structures are analyzed for procedural meaning and then reorganized to reflect the
broader functional intent of the program. This process supports the construction of a
structured mental model and enhances the developer's ability to reason about program
behavior [4].

2.1.4 Hybrid Program-Comprehension Strategies

Hybrid strategies refer to flexible cognitive models that allow programmers to integrate
both top-down and bottom-up approaches to program understanding. Developers
dynamically switch between strategies depending on the nature of the task and their
level of familiarity with the code. Research suggests that hybrid strategies can improve
efficiency by allowing developers to focus only on the relevant parts of the code,
reducing the time required to build a coherent mental model. In contrast, relying on a
single strategy, especially a bottom-up one, can lead to more comprehensive
knowledge, but also increased cognitive load and processing time [34].

Siegmund discusses how experienced programmers often start with a top-down
strategy, using their domain knowledge to form high-level hypotheses about the
functionality of the program. When these initial hypotheses fail to adequately explain
specific code fragments, developers switch to a bottom-up analysis to refine or revise
their mental model. This strategy allows them to resolve ambiguities and update their
understanding efficiently. Top-down comprehension remains the preferred approach
due to its lower cognitive demands, while bottom-up is typically used as a fallback
when encountering unfamiliar structures [8].

Similarly, Koenemann and Robertson conceptualize program comprehension as a
goal-directed, hypothesis-driven process. They argue that readers selectively focus on
code segments that are most relevant to their current goals. Initially, comprehension
tends to follow a top-down path, but if hypotheses cannot be validated or
inconsistencies arise, the reader switches to a bottom-up process to explore the
program structure in more detail [35].

21

2.2 Approaches to measure Program Comprehension

Various methods have been used in empirical software engineering to assess program
comprehension. The following sections summarize the main techniques used in this
study.

2.2.1 Task Performance

Task performance is one of the most widely used indirect methods of assessing code
understanding. This approach assesses a participant's ability to complete
programming-related tasks, often measuring two key metrics: correctness and
response time. Correctness refers to the accuracy of participants' responses, and for
some researchers, it is an indicator of their level of understanding. Response time
provides insight into the efficiency of cognitive processing and familiarity with the code
or domain.

Task performance can be implemented in both face to face and online experimental
settings. It allows for both individual and group-based analyses, making it versatile for
assessing comprehension in diverse populations. Typically, participants with strong
knowledge of domain perform more accurately and efficiently, whereas novices often
take longer and make more errors. These performance-based metrics provide
valuable, objective insights into the effectiveness of comprehension strategies [36].

2.2.2 Interviews

Interviews are a qualitative data collection technique that involve structured or semi-
structured dialogues between the researcher and the participant. Unlike quantitative
methods, which focus on 'how much' or 'how many', interviews explore 'how' and 'why'
participants behave or think in certain ways. This makes them particularly useful for
gaining deeper insights into cognitive processes and learning experiences [37].
According to Kvale and Brinkmann, an interview is "a conversation that has a structure
and a purpose; it goes beyond the spontaneous exchange of views because it is based

on the researcher's agenda and focuses on eliciting specific types of information" [38].

Interview structures range from strictly pre-defined to completely open-ended,

depending on the aims of the study. In program comprehension studies, interviews are

often used to supplement quantitative data. For example, Xia et al. conducted a large-

scale field study with professional programmers, combining observational data with

follow-up interviews. Their results showed that comprehension tasks consumed a
22

significant amount of work time, especially for less experienced developers,
highlighting the value of qualitative insights in understanding how developers’
approach and experience comprehension challenges [26]. While interviews can
provide rich, detailed data, they also present challenges. The risk of interviewer bias,
both at the questioning and interpretation stages, can affect validity. Careful design
and reflexivity are therefore essential to ensure reliable findings [39].

2.2.3 Subjective Ranking

Subjective rating methods aim to capture participants' perceptions and self-assessed
levels of understanding. The most used tools include the Likert scale and the semantic
differential scale. These tools convert qualitative judgements into quantifiable data that
can be analyzed statistically. The Likert scale measures agreement or disagreement
with a series of statements [40]. While these scales are valuable for capturing
perceptions, they are inherently limited by the specificity and clarity of the questions
asked. Subjective rating techniques have been widely used in studies of program
comprehension. For example, Apel et al. used Likert-type items to assess participants'
familiarity with different programming paradigms [41]. Similarly, Miara et al. used
subjective ratings to determine the most comprehensible indentation styles in source

code, revealing preferences for two- or four-space indentation levels [42].

2.3 New approaches to measure Program Comprehension

Various approaches and technologies have been used to gain further insight into the
process of program comprehension. These strategies are discussed in the following

sections.
2.3.1 Eye Tracking

Eye tracking has become a widely used tool for investigating cognitive processes,
particularly in domains where visual attention plays a central role. The eye-mind
assumption, proposed by Just and Carpenter, suggests that individuals focus their
attention exclusively on the part of the stimulus currently under observation, and that
eye movements closely reflect ongoing cognitive processes [43]. This assumption,
together with the immediacy assumption, forms the theoretical basis for interpreting
eye-tracking data and provides insight into the specific areas of focus, cognitive effort

and time required for comprehension.

23

Rayner highlighted that recent advances in eye-tracking technology have made it
possible to collect gaze data with high temporal and spatial resolution [44]. Over the
past few decades, eye-tracking has become increasingly popular in software
engineering research, providing a powerful means of observing how developers
comprehend code. Eye trackers record gaze data, capturing the user's overt visual
attention [45]. Lim et al. categorize eye trackers into three main types: mobile eye

trackers, virtual reality head-mounted trackers, and desktop-based systems [46].

Eye-tracking data typically consists of horizontal and vertical coordinates that indicate
eye positions on a visual stimulus. A calibration process maps sensor input to display
coordinates, while event detection algorithms distinguish between different types of
eye movements, primarily fixations and saccades [47]. Fixations, where gaze remains
stable over a region, are associated with cognitive processing and interpretation. Their
duration varies with task complexity, stimulus design and individual factors. Saccades,
on the other hand, are rapid eye movements that shift gaze and provide minimal visual
input. Data analysis often focuses on Areas of Interest (AOls), which are predefined

based on research objectives [48].

Given the volume of data generated, visualization techniques are critical in eye-
tracking analysis. Tools such as heat maps reveal spatial , gaze plots (scan paths) and
temporal focus. Gaze plots show the sequence and duration of fixations, while heat

maps use color gradients to illustrate the intensity of attention as shown in Figure 2.1.

Figure 2.1 Heatmap visualization over a code snippet with Flowchart.

24

Peitek et al. showed that eye tracking can be combined with more advanced methods,

such as fMRI, to gain deeper insights into program comprehension [48].

The effect of visual layout and color in UML diagrams has also been studied, with
results showing that expert developers use these elements more effectively than
novices [49], [50]. Crosby and Stelovsky observed significant differences in gaze

behavior between novice and expert programmers [51].

Sharif and Maletic conducted an eye-tracking study to investigate the influence of
different naming styles. They found that underscore-style labels were read faster than
camel-case labels [52]. Similarly, Park et al. investigated the effect of source code
readability rules such as minimizing nesting on comprehension. Using eye tracking,
they showed that following these rules increased confidence and reduced reading time
[53]. In addition to gaze position, eye-tracking systems can capture other cognitive
indicators. For example, pupil dilation is a widely accepted measure of cognitive load
[54]. Beatty and Kahneman found that pupil size increased with the difficulty of memory
tasks [55], while Hess and Polt linked dilation to the complexity of mathematical
problem solving [56]. Behroozi et al. used this metric to assess stress and strain during
programming tasks [57]. However, as noted by Doughty, these measures are sensitive
to various confounding factors, such as fatigue, humidity and environmental lighting
[58].

2.3.2 Electroencephalography

The electroencephalogram (EEG), first identified by Hans Berger in 1924, was a
breakthrough in neuroscience. Berger was the first to record the brain's electrical
potential between 50 and 100 pV from the human cerebral cortex. Berger published
his results in 1929, detailing rhythmic brain activity such as alpha and beta waves, and
noting how these signals varied according to an individual's state of wakefulness or

relaxation [59].

EEG is now widely used in several fields, including neurology to diagnose conditions
such as epilepsy and sleep disorders, and cognitive neuroscience to study functions

such as perception, attention and cognitive load [60].

25

EEG is a non-invasive neuroimaging technique that records the brain's electrical
activity via electrodes placed on the scalp, allowing real-time monitoring of neural

oscillations [61]. An EEG cap is shown in Figure 2.2.

Figure 2.2 EEG Cap [62].

Standard electrode placement follows the International 10-20 system, which ensures
consistency and accuracy in the positioning of electrodes over specific regions of the
scalp, labelled by anatomical zones (e.g. F for frontal, C for central) and numerical
indicators for hemisphere location. EEG signals are categorized into frequency bands
according to cognitive states [63], [64]. The main bands are described below and

illustrated in Figure 2.3.

o Delta (0.5-4 Hz): Associated with deep sleep and unconsciousness.

e Theta (4-8 Hz): Associated with meditation, creativity and cognitive
engagement.

e Alpha (8-12 Hz): Reflects relaxed alertness and low cognitive load.

e Beta (12-30 Hz): Associated with concentration, problem solving and mental
activity.

e Gamma (>30 Hz): Associated with perception, awareness and information
processing.

26

Delta O-4Hz

[Theta: 4-8Hz

[Beta: 12-3pH=z

[Gamma: 30+Hz

4

Figure 2.3 EEG signal bands [65].

Due to the complexity of brain signals, EEG data is amplified and analyzed using
mathematical techniques to visualize the energy distribution across frequencies,

commonly referred to as the power spectrum [66].

EEG data are typically displayed as waveforms for real-time interpretation of brain
activity. However, EEG signals are susceptible to several artefacts that can distort the

analysis as shown in Figure 2.4These include [67], [68]:
e Ocular artefacts: Caused by eye movements; appear below 5 Hz.
e Muscle artifacts: Result from facial or scalp muscle activity (50-150 Hz).
e Respiratory artifacts: Caused by impedance changes during breathing.
e Cardiac artifacts: Caused by heartbeats, typically around 1 Hz.

e Line noise artefacts: Caused by electrical noise (50-60 Hz), can be removed
by filters.

27

EEG
W
Eye-movement |
A
N S i e
V™Y Tagah

Observed EEG signal

!i)‘chlinkl N A
.Jl,”_MJVNNJl/\, Lt W
Muscular

Cardiac
I h
[

Figure 2.4 Configuration of an observed EEG signal including biological artifacts [68].

Artefacts must be removed or reduced to ensure accurate signal interpretation. A well-
known physiological indicator extracted from the EEG is the theta/alpha power ratio,
which is strongly correlated with cognitive workload. Studies show that theta power
increases and alpha power decreases as cognitive demand increases, making the ratio

a reliable marker of mental effort [69].

2.4 Novice Programmers

The comprehension process of novice programmers has been a major focus of
research since the 1970s. Soloway and Spohrer analyzed various aspects of novice
programming in their paper “Studying the Novice Programmer”. Their work highlighted
common challenges faced by novices, including misconceptions about programming
principles, a tendency to prioritize syntax over problem-solving methods, and
difficulties in developing effective debugging skills [70]. Similarly, Sheil examined
methodological concerns in introductory programming courses, emphasizing how
psychological research on programming could improve pedagogical approaches. In
addition, Robins and Rountree, in their comprehensive review, explored the challenges
faced by novice programmers and the complexities involved in teaching programming.
They found that novices often struggle with fundamental concepts, leading to
difficulties in both program comprehension and generation [71]. Winslow provided a
psychological perspective on programming pedagogy, noting that many challenges
have inadequate mental models and use an ineffective "line-by-line" approach to

programming [72].

Sheil underscored the complexity of understanding how students learn to program and

highlighted the importance of empirical studies to evaluate cognitive processes and

28

teaching methods in programming education [73]. Lishinski et al. investigated how
problem-solving ability relates to programming performance, finding that strong
problem-solving skills are a key predictor of success in programming education [74].
Mase and Nel observed that novice programmers often make unnecessary errors
when writing code, often due to a poor understanding of basic programming concepts.
Their study identified 21 common programming errors, grouped into four categories:
syntax, semantic, logic and type errors. Semantic and type errors were the most
common. Their results showed that semantic and type errors were the most common
[75].

Despite extensive research, there is no consistent definition of novice programmers,
as the terms 'novice' and 'expert' are context dependent. A programmer may be a
novice in some areas and an expert in others. In general, novices are individuals who
are new to programming and lack the experience, depth of knowledge and strategic
approaches of experts [76]. Several criteria and methods were used to classify novices

and these are presented below:

Duration of experience is a widely used metric. Lister defines novices as programmers
who have engaged in programming education for three to four years [76], while Sillito
et al. classify those with fewer than two years of professional programming experience

as novices [77].

Educational background is another criterion, including education levels, grades, the
number of programming languages known, and the quantity of programming courses
completed. Ricca et al. classified undergraduates as novices and graduates as experts
[78].

The size of programs written also serves as a measure of expertise. Muller categorized
programmers based on the number of lines of code in the largest program they
authored, with programmers of minimal expertise producing programs of up to 500
lines of code [79].

Research conducted by Kleinschmager et al. and Feigenspan et al. demonstrated a
positive relationship between individuals’ self-perceived programming competence

and their actual performance in comprehension tasks as well as programming

29

coursework [30], [80]. Building on this approach, Bunse introduced a five-point self-
assessment scale to classify programmers, identifying those at levels one and two as

novice developers [81].

Pre-testing is another method used to assess programming experience. Biffl et al. used
pre-tests to divide subjects into groups categorized as novice, intermediate and expert
[82]. Supervisor assessment has also been used, as shown by Hannay et al. where
supervisors classified participants into similar categories based on their programming
experience [83]. These different perspectives highlight the multidimensional nature of

novice programmers, which this study will consider in the analysis.
2.5 Related work

In computer science education, flowcharts have long been recognized as effective
visual tools for illustrating program logic and helping learners to understand control
structures. A wide range of tools and techniques have been developed to improve the
pedagogical use of flowcharts. In parallel, replication studies have received increasing
attention in software engineering research to validate original findings and to explore
the challenges associated with reproducing empirical results in educational and

experimental contexts.
2.5.1 Flowchart Tools Overview

These tools help learners develop the mental models necessary to understand process
logic, using shapes such as boxes to represent processes, diamonds to represent
decision points, and directed lines to represent control flow, which typically begins and
ends at well-defined points. Flowcharts are thought to facilitate the construction of
mental models by visually representing the logical structure of a program. Previous
research suggests that visualizing algorithms can help learners to abstract away from

syntactic details and focus instead on the underlying computational logic.

Originally introduced in the 1940s by Herman Goldstine and John von Neumann as a

method for "planning and coding problems," flowcharts became indispensable in the

development of computer programs. Analysts used them to visually sketch algorithms,

which programmers then translated into machine-readable code [84]. Since then,

introductory programming courses have widely adopted flowcharts due to their
30

effectiveness in improving understanding and performance for visual learners. By
providing a structured means of visualizing algorithms, flowcharts help students grasp

complex programming concepts more effectively [85].

Empirical studies have shown that flowcharts do not increase the cognitive load
associated with understanding the syntax of programming languages. By shifting the
focus away from syntax, they allow programmers to concentrate on problem-solving

skills.

For example, the original study examined the use of flowcharts alongside code
snippets, evaluating their impact on novice programmers’ comprehension. The study
assessed metrics such as fixation time, cognitive load, response time, correctness,
and subjective preference. The results showed that using flowcharts with code
snippets enhanced novices' mental models and understanding, resulting in an 18%

increase in correctness [24].

Flowchart-based programming environments have evolved to address these
challenges, enhancing their utility as educational tools. These environments reduce
syntax-related cognitive load, enable step-by-step execution, and provide real-time
variable inspection. For instance, BACCII and BACCII++, developed at Texas Tech
University, support procedural and object-oriented programming through flowchart
creation and automatic code generation. Empirical studies at the university showed
significant improvements in students’ performance when using these tools compared
to traditional methods [86], [87]. Western Kentucky University developed FLINT, which
focuses on teaching algorithm design through visual execution. While it effectively aids
visual learners, its lack of text representation limits its broader applicability [88], [89].
Similarly, Sonoma State University developed the SFC Editor, which generates
pseudocode from flowcharts but lacks execution capabilities, necessitating external

tools for program execution [90].

RAPTOR, developed at the United States “Air Force Academy”, integrates a drag and
drop flowcharting interface with features such as real-time variable inspection and
automatic code generation in multiple languages, including Ada, C#, and Java.

Research indicates that students overwhelmingly prefer RAPTOR for algorithm

31

representation, and it enhances their problem-solving skills [91], [92]. Figure 2.5 shows
an example of a RAPTOR flowchart.

Andrew S. Scott created Progranimate, a web-based e-learning platform designed to
teach programming through dynamic, structured flowchart construction, synchronized
code generation in multiple programming languages, and animated execution. The
platform offers a user-friendly interface that frees students from the complexities of
syntax, enabling them to concentrate on problem-solving and comprehending the
abstractions and semantics of programming. Figure 2.6 depicts an example of a

programmer’s interface, showcasing its features and constructs.

Scott conducted an in-depth empirical study to evaluate the effectiveness of
Progranimate in enhancing the programming education of first-year undergraduate
students. The study was carried out at the University of Glamorgan and the University
of Manchester for at least 11 weeks. A total of 242 students participated, with 99
completing the final questionnaire. The results were statistically significant,
demonstrating that Programmer’s simplicity enabled students to quickly grasp
imperative programming concepts such as variables, input/output, assignment, and
calculations. The first tutorial introduced these foundational concepts in an engaging
and motivating problem-solving context, surpassing the capabilities of standard
development environments. The study's positive outcomes led to the integration of
Progranimate into programming courses at the University of Glamorgan and the
University of Manchester, showcasing its enduring value as an educational tool. Scott’s
research reinforces the importance of interactive and adaptive platforms like
Progranimate in supporting the development of problem-solving skills and fostering

deeper comprehension of programming concepts among novice programmers [93].

32

Raptor - pex2c.rap B E m

File [Scale View Run Window Help
o|lw|als|nlalalo] [v|u|a|n] ———) Joo% -
Symbels main]

D A

Assignment

Call

Input Output
=]

Selection

Loop

PIXELS_PER_MILE: 360 e w;e;_v.~>500 =
TARGET_X: 300 e _‘
TARGET_Y: 300

theta «— arctan(- vav_v
+targst v, -uav_x+

draw_circle(floor(uav_x *
pixels_per_mils), Soorfum v *
pixals_par_mile), 3, bhue v

draw_circle(floor({tarsst x *

pixels_per_mile), floostarst v *)
pixals p mils), 3, =d v

£ | >

Figure 2.5 An example of a RAPTOR flowchart [94].

Atanasova and Hristova developed the Flowchart Interpreter (FCI) at the University of
Rousse in Bulgaria to enhance programming education. FCI enables users to construct
and execute flowcharts visually or non-either visually, supporting novice programmers

in developing essential debugging and testing sKills.

However, FCl's reliance on primitive shapes and lack of color differentiation for
flowchart construction can increase cognitive load and divert users' attention from core
programming concepts. Additionally, a literature search indicates that no published or
widely available empirical research has evaluated the effectiveness of FCI, limiting its

validation as a robust educational tool [95].

33

LEE

Save Load New Run Step {Eause tog

public static void main(String[] args)

{ Varible Type Vaiue
= inti=0; i int 0 =
e int dishNo = 0;
string[] dishes = {"Wongton Soup","Spring Rall A0S TG °
doublef[] prices ={1.5,0.99,1.2,3.0,2.45,2.85 1
W System.out printin("Please enter dish number”,
ot Scanner input = new Scanner(System.in);
n dishNo = input.nextint():
| —- if (dishNo <= dishes.length)
[~ ‘
for (i=0i<disheslength;i=i+1)
< { ———
T o if (dishNo ==1i) Name Hama
[dishes prices
| ¢ Type Type
¥ } string[] double[]
L h Length
| } 10 10
Values Values
P e =) ~ | 0 "Wongto... (0 |1.5
Print OULDUL: | + * ;% + dersfl] + * £ + prcad] \} 1 "Spring R... |1 10.99
enter dish number 2 "Prawn Cr... |2 [1.2
2 e
: Prawn Crackers £1.2 " " : qq Frie... |4 |2.
rintin(“The entered dish does ni [}/i5 Chow M 585
6 "Bean Spr 1.89
7 "Crispy D... |7 4.1
3 3.1
2.7

(AT

yjoe: Paramet

Figure 2.6 The Progranimate programming environment [96]

Andrzejewska and Stolinska conducted an eye-tracking study to compare the
effectiveness of structured flowcharts and pseudocode for algorithm comprehension
tasks. They found that participants using flowcharts completed tasks more efficiently,
made fewer errors and reported higher levels of confidence, particularly when dealing
with complex algorithms. These results suggest that flowcharts can significantly

improve cognitive processing in challenging programming scenarios [97].

Dzidek et al. investigated the role of UML in maintenance tasks. Their empirical study
concluded that UML could improve the maintainability of software without increasing

the time required, highlighting its potential for advanced learners [98].

In a separate study, Cabo examined the integration of flowcharting into Python
instruction. He found that 66% of students believed that flowcharts made problem
solving easier. This highlights their potential as a tool for developing logical thinking
skills before engaging with syntax [99]. Similarly, Xinogalos conducted a survey of
flowchart-based programming environments and concluded that these visual platforms
improve program comprehension and foster problem-solving abilities by enabling
users to construct and understand program logic visually [100].

34

Together, these studies highlight the importance of flowcharts as cognitive and

instructional tools in introductory programming education.

2.6 Replication Study

Replication plays a critical role in verifying experimental results, particularly in empirical
software engineering, where it is used to assess the consistency of outcomes across
different methods, technologies, and populations [93], [101]. In computing education,
replication has become increasingly important for validating instructional interventions

and for understanding learner behavior in diverse contexts [102].

As evidence-based practices gain prominence, replication studies are essential for
developing a cumulative body of reliable knowledge that informs educational and
practical advancements. Despite their value, replication studies face several persistent
challenges that can influence outcomes and complicate comparisons. Related factors

will be mentioned in the following sections.

In experimental research, replication refers to repeating a study under comparable
conditions, potentially with variations in sampling or context. The objective is to assess

the reliability and external validity of the finding of a previous study.

Moreau and Wiebels stated that replication requires not only duplication of procedures,
but also careful attention to the intentions and methodological integrity of the original
study. This ensures meaningful interpretation of replication results and reduces

ambiguity in assessing their consistency with the original findings [103].

Camerer et al. conducted a large-scale empirical replication of 21 high-impact social
science studies originally published in Nature and Science. Their study implemented
extended sample sizes and used pre-registered protocols reviewed by the original
authors. Only 62% of the experiments replicated statistically significant effects in the
same direction, with replicated effect sizes averaging about half those of the originals.
These results highlight the inherent challenges in replication, such as statistical power,
experimenter bias, and methodological drift. Additionally, the study noted a correlation
between expert predictions and actual replication outcomes, suggesting tacit

knowledge within the research community about result robustness [104].

35

Despite its importance, replication is not without limitations. A successful replication

does not definitively validate the original findings, nor does a failed replication

categorically refute them. Variations in outcome may stem from uncontrolled variables,

methodological flaws, system complexity, or random variation. Therefore, the scientific

community increasingly evaluates replicability not as a binary measure, but as part of

a continuum of evidentiary credibility, informed by a cumulative body of research [105].

2.6.1

Challenges in Conducting Replication Studies

Replication studies are essential for validating and strengthening the reliability of

empirical research findings. However, they face a variety of methodological, technical,

and systemic challenges that can hinder their execution and impact:

Limited Access to Original Researchers: A frequent obstacle in replication
research is the inability to contact or collaborate with the authors of the original
study. This lack of communication can impede the replication team's
understanding of methodological choices or experimental nuances, even when
documentation is provided.

Technical Obsolescence: Replication efforts may also be compromised by the
rapid evolution of technology. Software tools, programming libraries, and
experimental platforms used in the original study may become deprecated,
incompatible, or unavailable in the intervening years.

Variability in Participant Characteristics: Replicating studies involving human
subjects introduces inherent variability, especially in cognitive and behavioral
domains e.g., program comprehension. Differences in participant background,

skill level, and demographic profile can significantly affect results.

2.6.2 Types of Replications

Replication studies can be broadly categorized based on their methodological

alignment with the original study:

Direct Replication: Involves repeating the original study's procedures as
closely as possible to verify its findings under nearly identical conditions [106].
Conceptual Replication: Tests the same hypothesis using different methods

or operationalizations to evaluate the validity of the underlying theory [107].

36

e Systematic Replication: Involves multiple studies with intentional
methodological or contextual variations to assess the robustness of findings.
This is more commonly related to systematic reviews than singular empirical
replications [103].

e Constructive Replication: Retains the core elements of the original study
while adding new variables or methodological enhancements to generate
additional insight [108].

2.6.3 Replication in Computer Science

Replication in software engineering serves several critical functions such as controlling
for sampling errors, testing independence of findings from specific researchers or
contexts, and confirming protocol consistency. These practices help build a resilient

empirical foundation and improve the overall quality of engineering research.

Nosek and Errington stress that replication is essential for verifying scientific claims,
including software engineering. They emphasize the value of examining findings
across different organizational settings, especially within agile development. Agile
practices are now widely adopted and have undergone replication-based evaluations
to test their effectiveness across diverse project scopes, team structures, and
organizational cultures. These studies reveal both consistent benefits and challenges
[109].

Bacchelli and Bird underscore the centrality of code review in quality assurance and
argue that replication studies offer valuable insights into how factors such as review
tools, reviewer expertise, and team interaction styles affect performance outcomes.
Comparisons between formal and lightweight review techniques across different

contexts have yielded data that inform best practices and review efficacy [110].

Harman et al. highlights the maturing landscape of software testing research and the
critical role of replication in refining testing strategies. Their findings confirm that
consistent application of test designs such as mutation testing or regression coverage
across different software systems helps to clarify which approaches are reliably
effective. This, in turn, enables the software engineering community to extract best

practices with empirical support [111].

37

3 Methodology

A controlled experiment was chosen as the fixed design strategy to evaluate the effect
of flowcharts on novice programmers' code comprehension. This method involves
deliberately manipulating one or more factors, known as independent variables, while
holding all other conditions constant. The resulting changes are measured in terms of
their impact on one or more dependent variables, allowing researchers to assess

causal relationships [112].

At this stage of the study, the research objective, the independent and dependent
variables, and the hypotheses are clearly defined. These components directly
influence the experimental design and guide how the hypothesis will be tested
empirically through structured observation. They also determine how variations in the
independent variable are expected to affect the dependent variable under controlled
conditions. Careful definition and operationalization of these elements guide the overall
research design and inform the procedures for data collection, measurement, analysis
and hypothesis testing. Runeson et al. stated that the more thoroughly these

preparations are completed, the smoother the experiment will proceed [112].
3.1 Goal

The primary objective of this replication study is to verify the findings of a previous
study that examined the effectiveness of flowcharts as a visual aid in supporting novice
programmers' code comprehension. The original study suggested that flowcharts
improved understanding of control structures and algorithmic flow by facilitating the
development of appropriate mental models [24].

This replication aims to assess whether the benefits observed in the original study such
as improved task correctness, increased fixation time, and stronger subjective
preference can be reproduced under similar experimental conditions with a new
sample of participants and a revised set of three algorithmic tasks. Following the
methodology, measurement tools and experimental design of the original study, this
research seeks to assess the generalizability and robustness of the findings in the
context of visual aids in computer science education. The research question is

formulated as follows:
38

RQ: Can the impact of flowcharts on novice programmers’ comprehension be verified
through replication under similar experimental conditions?

3.2 Modifications to Experimental Material

In this replication, three of the original code snippets (i.e. MultiplicationByAdding,
SumOfintervalNumbers and DiffPosAndNegNumbers) were replaced with
BinarySearch, BubbleSort and Power. This change was made to better reflect a wider
range of algorithms commonly taught in introductory programming courses, and to
provide a more comprehensive test of the effectiveness of flowcharts in supporting
code comprehension. These algorithms are standard components of undergraduate
science education and are used to introduce key concepts such as iteration, recursion,
decision making, and algorithmic efficiency, as outlined in Introduction to Algorithms
by Cormen et al. [113].

The substitution was further motivated by observations from the original study where
participants showed limited engagement with the flowcharts associated with the
replaced algorithms. These tasks also had the highest correct rates, suggesting that
their low complexity or familiarity may have led participants to disregard the visual aids.
To address this, the newly selected snippets provide a slightly greater cognitive
challenge, encouraging more active and purposeful interaction with the flowcharts

during the comprehension process.

A pilot study was conducted with the new snippets (BinarySearch, BubbleSort and
Power) to ensure that they matched the difficulty of the remaining original tasks. The
results confirmed that these snippets were appropriately challenging and consistent
with the experimental design. Their inclusion supports a more nuanced examination of
how flowcharts influence understanding of different algorithmic structures, thus
supporting the broader aim of the study. This replication also uses the same pre-
questionnaire as the original research, including the self-estimation item, but
introduces specific redesigns to improve clarity, precision, and participant usability.
Most notably, the self-estimation question now uses a five-point Likert scale to assess
participants’ perceived programming experience. This structured and intuitive format
facilitates more accurate self-assessment and reduces cognitive load during the

questionnaire [40].

39

Similarly, the post-questionnaire was modelled on the original version but refined to
increase both specificity and participant engagement. Whereas the original study relied
primarily on open-ended questions about task-solving strategies and the use of
flowcharts, this replication used a mixed format approach, including five-point Likert-
scale items, open-text responses, and pre-defined reasoning options. These
extensions provide a more detailed insight into participants' subjective preferences and
cognitive strategies, ultimately supporting a richer interpretation of the experimental

results.
3.3 Independent Variable

Independent variables are the treatments or conditions intentionally manipulated to
observe their effect on the dependent variables [112]. They are the primary factors
under studied in experimental research, allowing researchers to explore cause and
effect relationships and test specific hypotheses. In this study, the independent
variable is the presence of a flowchart accompanying comprehension tasks. More
specifically, the study examines whether the inclusion of a flowchart alongside the
source code influences the program comprehension processes of novice

programmers.
3.4 Dependent Variables

Dependent variables are the outcomes measured in an experiment to assess the effect
of changes in the independent variable . They reflect the response or effect and are
typically observed quantitatively or qualitatively to assess the success of the treatment
or condition applied. In this study, the dependent variable is program comprehension,
which is assessed using the same metrics defined in the original study. The dependent

measures include:

¢ Visual attention: Measured by eye-tracking, specifically the fixation duration on
AOls.

e Correctness: Defined as the percentage of correct responses given during the
comprehension tasks.

e Response time: The total time taken by participants to read and respond to

each comprehension task.

40

e Mental workload: Assessed using EEG data and operationalized as the ratio
of theta/alpha brain wave frequencies, a recognized indicator of cognitive load.
e Subjective preference: Based on participants' expressed preference for

completing tasks with or without flowcharts.
3.5 Hypotheses

A hypothesis is a testable statement that predicts the relationship between one or more
variables and serves as the basis for statistical analysis [112]. In this study, as in the
original research, hypotheses are formulated to evaluate the effect of flowcharts on
novice programmers' code comprehension. These hypotheses are based on the
existing literature, which suggests that visual aids such as flowcharts can have a
positive impact on program comprehension and reduce cognitive load. To investigate
this, several performance indicators will be analyzed, including response time,
correctness, visual attention, and cognitive load, to explore how the presence of
flowcharts influences comprehension outcomes. The hypotheses used in this
replication study were adopted directly from the original research to ensure

methodological consistency and to effectively address the objectives of this study [24]:

H1: Participants refer to flowcharts in addition to code snippets.
Ho1: Participants do not refer to flowcharts in addition to code snippets.

H2: Participants using flowcharts take less time to complete the comprehension tasks.
Ho2: There is no significant difference in response time of comprehension tasks due

to the use of flowcharts.

H3: Participants using flowcharts answer with a higher correction rate.
Ho3: There is no significant difference in correctness of comprehension tasks due to
the use of flowcharts.

H4: Participants using flowcharts have a lower cognitive load during the
comprehension tasks.
Ho4: There is no significant difference in cognitive load during comprehension tasks

due to the use of flowcharts.

H5: Participants prefer flowcharts in addition to code snippets.
Hob: Participants do not prefer flowcharts in addition to code snippets.

41

Hypotheses H1 to H4 will be assessed using quantitative data collected through eye
tracking, EEG analysis and performance metrics. Hypothesis H5 will be tested
qualitatively through a post-questionnaire interview focusing on subjective user

preference and perceived helpfulness of flowcharts.
3.6 Participants

This replication study focuses on the comprehension process of novice programmers,
but the sample of participants differs from that of the original study. Although there is
no universally accepted definition of a novice programmer, several criteria such as
years of programming experience, education level, project size, and familiarity with
programming languages were considered [30]. The original study also relied on a
combination of these factors to define novice participants. Accordingly, this study
adopts a similar approach, collecting data on participants' academic and professional
programming experience, familiarity with programming languages, and relevant
demographic information to ensure comparability and validity in the replication

process.

A prequestionnaire was used to assess participants’ coding background, including self-
estimated programming experience, to ensure consistency in participant classification.
The questionnaire also assessed familiarity with key concepts such as languages and
paradigms. For example, participants were asked to compare their skills with those of
their course peers and with professionals with over 20 years' experience. Peitek et al.
observed that while traditional measures (e.g., years of experience) do not consistently
predict programming efficiency, subjective indicators such as self-estimation and

motivation to learn show stronger correlations with performance [114].

To participate in this study, individuals were required to have received a minimal
education in computer science domain, including basic knowledge of Java syntax,
control structures, and arrays, as well as limited experience with fundamental

programming tasks.

Participants were also required to be at least 18 years old and have at least one and a

half hours available to complete the study.

42

Recruitment was conducted via announcements posted in the Opal forum and on
social media groups associated with various modules in the Department of Computer
Science at Chemnitz University of Technology. To ensure anonymity, no personally

identifying information was linked to the collected data.

In the invitation email, available time slots were listed, and appointments were
scheduled directly with the experiment supervisor based on students’ availability. The
prequestionnaire was hosted online on the SoSci platform, distributed via email, and

responses were collected alongside participants' demographic information.
3.7 Confounding Factors

Confounding factors are extraneous, unwanted variables that can affect both the
dependent and independent variables in an experiment [112]. These variables need to
be controlled by using appropriate methods and techniques to minimize bias. To
ensure the validity of the results, any observed effects should be attributed to the

confounding variable and not to the independent variable.

e Program experience is widely recognized as an important confounding factor in
software engineering experiments and is defined by researchers using various
criteria such as years of experience, number of projects completed, self-
assessment, pre-tests, educational level, and supervisor ratings [115]. In this
experiment, participants are given a prequestionnaire that includes self-
assessment questions, and only those who meet at least one definition of a
novice as described in section 2.4 are allowed to proceed with the experiment.

e Prior experience with the material or tools may influence participants’
performance, providing an advantage in task comprehension [116]. To control
this, familiarity was assessed via a prequestionnaire. In addition, all participants
were given a standardized introduction to the flowchart representation before
the experiment began to ensure consistent understanding across the sample.

e Long or repetitive sessions can reduce attention and motivation, affecting
cognitive performance in later tasks [116]. This experiment was therefore

designed as a single, concise session to minimize fatigue.

43

Concerns about being judged or evaluated may inhibit participants’
performance, particularly if they believe the results may impact their academic
standing [116]. Participants were assured of full anonymity and informed that
their performance would not influence their course grades.

Ensuring that all participants follow the experiment protocol precisely is vital to
avoid procedural bias [116]. Participants were instructed not to use any external
resources and to complete the tasks in one uninterrupted sitting. Completion
times were recorded, and outliers caused by distraction were excluded from the
analysis.

Tasks left incomplete can introduce bias. In this study, incomplete responses
were flagged and excluded during the analysis phase to maintain data integrity.
The participant recruitment process was carefully designed to align with the
study objectives, as described in the previous section [116].

The sequence of tasks may influence performance if participants improve with
practice [116]. To mitigate this, tasks were presented in randomized order.
Additionally, a set of dummy tasks was administered at the beginning of the
session to acclimate participants to the experimental environment
Mono-method bias occurs when only a single measure is used to quantify a
variable [116]. To counter this, the study employed multiple assessment
measures, including eye tracking, EEG, and subjective questionnaires.
Inter-individual differences, such as variations in cognitive abilities and personal
characteristics can influence performance outcomes [116]. A within-subjects
design was employed to control such variability, allowing each participant to
serve as their own control.

Technical problems, such as computer malfunctions or missing participant
questionnaires, can occur during experiments [116]. These problems can affect
the results as participants may have to repeat tasks or data may be lost. To
avoid bias, data from affected participants are excluded from the analysis.
Intelligence lacks a clear definition and includes skills such as problem solving
and memorization [116]. To minimize its impact, task complexity was

intentionally kept low to avoid requiring advanced cognitive sKills.

44

e Motivation significantly influences the effort invested in a task and,
consequently, performance. Higher individual interest generally improves
engagement and learning outcomes [117]. In this study, all participants
volunteered after receiving a brief explanation of the study's relevance, fostering

intrinsic motivation.
3.8 Experiment Material

The materials used in this replication study include code snippets, a pre-questionnaire,
and a post-questionnaire. These materials closely follow the structure of the original
study, with minor modifications to the questionnaire design for improved clarity. Each

component is described in detail in the following sections.
3.8.1 Code Snippet Selection

The selection of code snippets plays a crucial role in shaping participant performance
and engagement throughout the study. To ensure methodological consistency and
comparability with the original study, most of the original snippets were retained.
However, the following three snippets were replaced: MultiplicationByAdding,
SumOfintervalNumbers, and DiffPosAndNegNumbers. The reasons for these

replacements are provided in section 3.2.

To guide this replacement, a rigorous selection process was used to identify
BinarySearch, BubbleSort and Power as suitable replacements. These new snippets

were selected based on the following criteria derived from the original study:

e Avoidance of domain-specific knowledge: As participants are novice
programmers, snippets requiring specialized knowledge (e.g., advanced data
structures or classes) were excluded. Such complexity could reduce
engagement, increase response times, and limit the collection of meaningful
data [119].

¢ Sufficient complexity to require dual-modality comprehension: The selected
snippets should be sufficiently complex to encourage participants to consult
both the source code and the associated flowcharts. Simpler snippets may
allow participants to rely solely on the code, limiting insights into the use of

flowcharts.
45

e Encourage bottom-up comprehension strategies: Snippets should avoid
recognizable patterns or "beacons" that allow participants to immediately infer
functionality without detailed analysis. This ensures a more authentic
measurement of comprehension effort and avoids biased results [32].

¢ Inclusion of core programming constructs: All snippets include basic concepts
commonly taught in introductory programming courses, such as control
structures, loops and conditionals. Advanced concepts have been deliberately
avoided to maintain accessibility for beginners.

¢ Prior validation through pilot studies: The snippets were tested in preliminary
studies to ensure that they were suitable for assessing program

comprehension in novice participants.
3.8.2 Pre-questionnaire

Pre-questionnaires are a fundamental tool in software engineering research to assess
participants' experience and background, as emphasized in previous studies [112].
This prequestionnaire follows the same approach as the original study, but with slight
modifications to the design. This questionnaire uses a five-point Likert scale to assess
participants' perceived programming experience. This scale provides a more intuitive
and structured approach to self-assessment. According to Likert (1932), reducing the
number of response categories can more effectively capture attitudes and self-
perceptions, especially when respondents are not domain experts [40]. Each level on
the scale is clearly labelled 'Beginner', 'Novice', 'Competent’, 'Proficient’, and 'Expert'
to help participants quickly identify where they fit without over-analyzing. This
simplification minimizes cognitive load and encourages more accurate and reliable
responses. In the original study, participants were asked a combined question such
as: "How do you estimate your programming experience compared to fellow students
and experts with 20 years of practical experience on a scale from 1 to 57" [24]. This
question design may have caused confusion as it involved two different comparison
groups, colleagues and experienced professionals within a single item. To address
this issue, in this replication study the question was redesigned and split into two
separate items: one comparing participants' experience to that of their course peers,

and another comparing it to that of experienced professionals.

46

This modification is based on the understanding that novice programmers may assess
their skills differently depending on the reference group. The mean concept of the
prequestionnaire was adopted exactly as it appeared in the original study. However,
modifications were made to the design layout of the questionnaire to improve clarity

and usability. The redesigned pre-questionnaire in this study is as follows:

e How long have you been programming for educational purposes? (In years)
e How long have you been programming professionally? (In years)

e How do you estimate your programming experience on a scale from 1 to 5?

Beginner Novice competent proficient Expert

) O O @) @)

e How do you estimate your programming experience compared to fellow

students?
Significantly Less About the same More Significantly more
less experience level of experience experience than
experience than most experience as than most most students.
than most students. most students. students.
students.
O 0] 0] 0] 0]

¢ How do you estimate your programming experience compared to experts with
20 years of practical experience?

| have | have less | have | have | have
significantly less experience comparable more significantly
experience experience experience more
experience.
0] 0] 0] @) @)

47

e How do you estimate your experience using flowcharts to visualize or design a
program on a scale from 1 to 5?

Not at all A little Moderately Mostly Fully
experienced experienced experienced experienced experienced
@) O O O O

e How experienced are you with the following programming languages on a scale
from 1 to 5?

Programming No Basic Competent Experienced Expert
Language Experience Understanding

Java O @ O @) 0]

C O O 0] @) 0]
Python 0] 0] @) O O
JavaScript 0] 0] @) 0] @)

¢ How many additional programming languages do you have moderate
experience with?

e How experienced are you with the following programming paradigms on a
scale from 1 to 57

48

No Basic Capable Experienced Expert
Experience Understanding

Functional O O O O O
programming

Object-oriented O O O 0] O
programming

Imperative O O O O O
programming

Logical O O O O O
programming

3.8.3 Post-questionnaire

The post-questionnaire plays an important role in this study, providing insight into
participants' strategies and preferences during the comprehension tasks [112]. It is
designed to determine how subjects engaged with the flowcharts, whether they found
them helpful, and what approaches they used to complete the tasks. This post-
questionnaire closely follows the structure of the original post-questionnaire but

introduces targeted enhancements to increase specificity and participant engagement.

Whereas the original study relied primarily on open-ended questions about task-
solving strategies and flowchart use, this study expands the format to include five-point
Likert scale items, open-ended questions, and pre-defined reasoning options. These
additions allow for a more nuanced analysis of participants' subjective experiences and
cognitive processes. At the end of the experiment, participants were shown the tasks
they had completed on the first screen, along with the corresponding flowcharts. This

allowed them to review and reflect on the material.

The post-questionnaire was then presented on a second screen. If necessary,

participants could return to the first screen at any time to refresh their memory before

49

answering the questions and were encouraged to review these tasks during the
interview to identify which flowcharts they found helpful or unhelpful. This interactive,
visual method was designed to improve recall and response accuracy, aligning with
research showing that visual aids can improve memory retrieval during interviews

particularly in task-based assessments [120].

To assess participants' preferences and strategies. The following questions were

included in the post-questionnaire:

e Please indicate which tasks you found the use of flowcharts helpful and which
you did not, giving a reason for your answer, e.g. on the first screen you can

navigate through your completed tasks:

Helped me understand the task.

Avoid ambiguity in the task.

Task was easy.

It is a new strategy for me, and | am not comfortable using it.
| used to program with code.

| am a visual or verbal learner.

O O000000a0d

Others, provide your own reason.

e Could you describe the approach or strategy you used to solve the tasks?

e How much did you refer to the flowcharts and how much to the code?

e For which task did you spend more time, when there was a flowchart present or
not?

e Did the presence of flowcharts in the task impact your understanding of the

source code on a scale from 1 to 57?

Not helpful Slightly helpful very helpful Extremely
helpful helpful
O O O O O

50

e |If flowcharts were not provided in the tasks, would you have preferred their

inclusion to aid task-solving?

O Strongly agree — | believe that flowcharts would greatly improve task
comprehension and make problem-solving alongside code more
efficient.

[0 Somewhat agree — | think flowcharts could offer some help in solving
tasks, but they are not essential for understanding.

O Neutral — | am indifferent about the inclusion of flowcharts and do not
feel they would significantly affect my approach to task-solving.

O Somewhat disagree — | find flowcharts somewhat unnecessary and
believe they might complicate the task-solving process.

O Strongly disagree — | prefer to approach tasks without flowcharts, as |

find them unhelpful in understanding or solving problems.

e Did you use flowcharts as a learning tool in your introductory programming

classes?

I Yes, in all introductory classes.
I No, they were not used.
I Yes, but only in one specific course.

[Yes, in several but not all introductory classes.
3.9 Tasks

Program comprehension studies ask participants to complete specific programming
tasks. These tasks are designed so that successful completion requires a clear
understanding of the code. By measuring the effort and accuracy required to complete
these tasks, researchers can gain insight into the difficulty of understanding the code
[119]. The program comprehension and software engineering literature use a variety
of tasks to assess how well participants understand code, algorithms and software
processes. Common tasks include debugging, tracing, predicting output, and
modifying code [121], [122].

51

Variable name obfuscation enforced a bottom-up processing approach, requiring
participants to understand the code from basic principles rather than relying on
contextual cues and prior knowledge. The comprehension task can be outlined as

follows:

e Each comprehension task consisted of two slides. On the first slide, participants
are presented with either a standalone code snippet or one accompanied by a
flowchart and are instructed to determine the task's output. Each
comprehension task includes the input, and all necessary details required to

reach the solution, as illustrated in Figure 3.1.

public static String functionl() {
int[] arr = { 3, 0, 1, 0 };
String res = "";

int var = 3;

for (int i = 8; i < arr.length; i++) {
int valve = arr[i];
if (value == var) {
res += "x";
} else if (value < var) {
res += "m";

}
res += "o0";
var--;

}

return res;

Figure 3.1 The comprehension task.

¢ On the second slide, participants are presented with four possible answer
choices and are required to select the correct one. If they are uncertain, they
have the option to skip the question, as illustrated in Figure 3.2. This feature
helps ensure the results remain more accurate and freer from guesswork-
related bias.

52

"XomxXxoxx" "XMOoXOoxx" "xommxoxm" "Xomoxoxo" Don't know

A
Figure 3.2 Answer Options for the Comprehension Task.

As mentioned above, a flowchart can be presented alongside the corresponding code
snippet. To ensure that the flowchart does not introduce unintentional bias, its design
must adhere to consistent and neutral standards. Therefore, the following aesthetic

criteria have been established to guide the construction of flowcharts:

e Only the universal standard symbols for flowcharts were used to ensure clarity
and consistency across all visual aids.

e Program logic was presented in a clear, unidirectional flow from top to bottom
and from left to right.
e Each symbol in the flowchart had a single-entry point (start) and exit point

(end), except for the decision symbol, also only standers symbols were used.
These are illustrated in Table 3.1.

e Syntax highlighting is retained in both the source code and the flowcharts, as it
is commonly used in major IDEs. Removing it from the snippet code could
change the behavior of the participants.

e The textual content within the flowcharts exactly mirrored the accompanying
code snippets, including all syntax elements such as type notations (int),
semicolons (;) and method calls (System.print.out).

e The borders of the flowchart shapes were color-matched to the syntax
highlighting of the source code, maintaining a visual balance that facilitates
comparative analysis.

e Font size and line spacing were carefully chosen to optimize readability and
facilitate the analysis of visual attention data, ensuring that participants could
comfortably engage with both the code snippets and flowcharts.

e Following established aesthetic and functional criteria ensures that the three
replacements mentioned in the snippet selection section of this replication
study are unbiased and fully consistent with the methodology of the original

study.

53

Shape

Meaning

Oval: Indicates the start or end of a
flowchart.

[int num =

3;

Represents processing steps, such as
calculations or data manipulation.

No

Yes

Rhombus: Used for decision points,
where the flow branches based on
different conditions or choices.

Table 3.1 Standard Symbols of flowcharts [24].

Figure 3.3 illustrates the code snippet and flowchart design used in this study. This

design was developed based on the criteria. The design aims to minimize potential

bias and facilitate the collection of meaningful visual

public static int[] function1() {

attention data.

int[] arrl = { 3, 4 }; in
int[] arr2 = {5, 2 }; in
int length = arrl.length; in

int[] res = new int[length % 2]; in

int

t[] arrl = { 3, 4 };

t[] arr2 = { 5, 2 };

t length = arrl.length;

t[] res = new int[length % 2];

i=20;

for (int i = 0; i < length; i++) {
int varl = arrl[i];
int var2 = arr2[i];

res[i + length] = var2;

return res;

int var2 = arr2[i];

v

res[i] = varl;
res[i + length] = var2;

[int varl = arrl[i];

i+

Figure 3.3 Comprehension task Code snippet with Flowchart.

54

3.10 Experiment Design

This study employed a within-subjects design, replicating the original study's
approach with minor modifications to align with the current research objectives.
These modifications are detailed in subsequent sections. Participants whose data
were included in the final analysis completed two types of comprehension task.
One task involved code snippets presented alongside flowcharts, while the other
involved code snippets alone. The key elements of the experimental design are

summarized as follows:

e The experiment consisted of 14 comprehension tasks in total. Seven of these
were presented with code snippets only, while the other seven were presented
with code snippets accompanied by flowcharts.

e Participants were given a total of 30 minutes to complete the tasks, followed
by a 5-minute post-task interview.

e To mitigate the effects of order and learning, the order in which the code
snippets were selected in Section 3.8.1 was randomized for each participant.
Tasks alternated between two conditions: a code snippet on its own, or a code
snippet presented alongside a flowchart. Crucially, no participant encountered
the same algorithm in both conditions. For instance, if a participant
encountered the BinarySearch algorithm in the code-only condition, it would
not appear again in the code alongside the flowchart condition. This ensured
that familiarity with an algorithm from a previous task would not influence
performance.

o After each task, participants were given a five-second rest period with a cross-
fixation stimulus. This was an amendment to the original study, which
employed a 10-second interval, in order to reduce both the overall session
length and participant fatigue.

e Before beginning the comprehension tasks, participants were given
instructions on how to interpret the flowcharts and were guided through a
practice task. This was done to minimize learning effects during the actual

experiment and ensure consistency across participants.

55

3.11 Tools

To ensure consistency and enhance comparability with the original study, the same
tools were used throughout the experimental process. The SoSci Survey platform was
also used to administer the pre- and post-questionnaires, improving the efficiency of
data collection by providing a streamlined, structured digital process. The following

sections contribute detailed descriptions of each tool used in the experiment.
3.11.1 Eye Tracker

Eye tracking enables visual attention to be measured by recording where participants
focus their gaze. This study used the same Tobii Pro X3-120 EPU eye tracker as the
original study [24]. The device projects invisible infrared light into the eyes and uses
high-resolution cameras to record corneal reflections. Advanced algorithms then
compute gaze direction and subtle eye movements. The Tobii Pro X3-120 captures
data at a rate of 120 samples per second, providing detailed insights into participants'
visual behavior [123]. The tracker was positioned beneath the stimulus screen, with a
screen resolution of 1920x1080 pixels and physical dimensions of 51.1x28.7 cm.
Participants were seated approximately 60 cm from the screen and 65 cm from the
eye tracker as shown in Figure 3.4. Proper alignment was verified using Tobii's position
guide, which displays facial contours and indicates correct eye detection by turning the
background green [124]. Communication with the device was managed using the Tobii

SDK and controlled via Python on a Windows 10 system.

A &5

[
m
P ~
6y ~

'
o a
'

Figure 3.4 Positioning the participant and the eye tracker [125].

56

3.11.2EEG

As in the original study, EEG data were recorded using the CGX Quick-20r wireless
headset. This system features dry sensors and adheres to the 10-20 international
electrode placement system. The Quick-20r is equipped with interchangeable dry
sensors that comfortably conform to different scalp shapes and sizes.

Prior to recording, the system provides visual feedback to indicate correct electrode
placement through green status lights, as illustrated in Figure 3.5. This ensures

accurate and reproducible measurements [125].

Figure 3.5 CGX EEG Headset [126].

3.11.3 PsychoPy

The experimental stimuli were presented using PsychoPy, which is an open-source
psychophysics software written in Python. PsychoPy supports precise visual rendering
via OpenGL and was used to display code snippets and flowcharts in full-screen mode,
as in the original study. Participants navigated the options using the arrow keys and
confirmed their responses using the spacebar. Minor adjustments were made for this
replication, such as library updates and the integration of marker signals for

synchronizing EEG and eye-tracking data [127].

57

3.11.4 SoSci Survey

The SoSci Survey platform was used to administer the pre- and post-questionnaires.
This web-based tool allows participants to complete surveys without having to install
any software. SoSci Survey facilitated the collection of structured data in alignment

with the design of the experiment [128].

3.12 Ethical Considerations and Academic Integrity

All textual references and paraphrased ideas in this thesis are derived from published
works and are properly cited in accordance with academic standards. Any closely
aligned wording was used for the purpose of accuracy and clarity, in line with the intent
of replication and literature synthesis.

58

4 Conduct

This chapter provides a detailed outline of the implementation process of the present
study, covering every step involved. It also describes the participants and the data

collection procedures.

4.1 Participants Demographics

A total of 11 students participated in the study, each completing the test within 30
minutes or less. Subjects reported between 2 to 5 years of academic programming
experience. Only five participants had professional programming experience, with a
maximum of 1.5 years, while the rest reported no such experience. Subjects were also
asked to assess their programming skills in comparison to their classmates and to
experts with 20 years of professional experience. Most participants rated themselves
as having intermediate acquaintance relative to their peers but considered their
expertise insufficient when compared to seasoned professionals. Additionally, they
evaluated their familiarity with Java programming as moderate. Regarding experience
with flowcharts, more than half of the participants 7 out of 11 rated themselves as “a
little experienced,” indicating limited prior exposure. One participant reported no
experience at all, while three participants identified as “moderately experienced”. Table
4.1 presents a detailed overview of the participants’ demographic and background

characteristics.

Male 6
Female 5
Age (in years) 27644
Learning Programming (in years) 39+14
Professional Programming (in 08+1.2
years)

Flowchart Experience 22+0.6

Table 4.1 Participants Demographics.

59

4.2 Procedure

This section provides a detailed outline of the experimental procedure. Figure 4.3
Overview of the Experimental Procedure. presents an overview of the experimental
workflow, covering each step from participant recruitment to the post-interview phase

as follows:

1. An invitation message is posted in the OPAL platform and in social media
groups for various modules offered by the Department of Computer Science at
Chemnitz University of Technology. The message clarifies that participation is
voluntary and will not impact course grades.

2. The invitation includes information about the importance of the participant's
involvement in supporting scientific research and their specific role in the study.
It provides contact email for questions, offers time slots based on the
participant's availability, confirms that the study will take approximately one
hour, and states that it will take place in the university's campus laboratory.

3. Once participants select a convenient time slot, they receive an email containing
a brief description of the experiment along with general instructions. This email
also includes a link to the pre-questionnaire.

4. In the next step, participants complete the pre-questionnaire, which gathers
demographic details and asks them to self-assess their programming
experience.

5. On arrival at the laboratory, the students are given the following instructions:

¢ All collected data was anonymized to ensure participant privacy.

¢ All necessary instructions for the tasks will be displayed on the screen before
the experiment begins.

e Participants are encouraged to attempt all tasks, but any task can be skipped
if the participant is unsure of the answer. This flexibility is provided to ensure
unbiased results.

e A sample Java task and a brief guide explaining the flowchart symbols will be
provided to familiarize participants with the procedure before the main

experiment begins.

60

The visual gaze data will be recorded using an eye tracker. A calibration
process is required to configure the device accurately before beginning the
experiment.

An EEG device will be used to record brain activity during the experiment. A
calibration process for the EEG device is also required.

In order to obtain high quality data, it is important that participants remain as
relaxed as possible and minimize any body movements throughout the

experiment.

. Participants will review the data protection form, which provides a detailed
description of the entire data collection process. Any questions the participants
may have will be answered at this stage. If participants agree to the terms and
conditions and sign the form, the experiment can proceed.

. The EEG machine is then calibrated. Each electrode in the EEG cap must be
individually adjusted according to the participant's hair density and head size.
The duration of this process varies depending on these factors, but it takes
approximately 10 to 15 minutes. The CGIX software is used to display the
impedance levels for each electrode. When an electrode's impedance is at an
acceptable level, it is indicated by a green light as illustrated in Figure 4.1. All

electrodes must reach acceptable impedance levels to complete this step.

Figure 4.1 EEG-Signals and Calibration [24].

61

8. The eye tracker is then calibrated. The participant sits approximately 60 cm
away from the screen, and the monitor height is adjusted for optimal positioning.
The Eye-tracker Manager software shows a green screen, as illustrated in
Figure 4.2, when the participant is properly aligned. During calibration, the
participant is asked to focus on 12 specific points displayed on the screen. Once
completed, the system calculates and visualizes the calibration accuracy. If the
accuracy is deemed inadequate, the procedure can be repeated. once the

participant is correctly positioned

CALIBRATE ()

Figure 4.2 Eye Tracker Calibration [124].

9. Once the calibration is complete, the participant is ready to begin. The study
presentation is displayed on the screen, with instructions and general
information.

10.The participant is first presented with training tasks. The introduction phase
includes a brief overview of flowcharts, followed by two practice tasks designed
to familiarize participants with the experimental setup. The first practice task
features only a code snippet, while the second pairs a code snippet with a
flowchart.

11.Next, the participant proceeds to the main comprehension tasks. A fixation
cross is displayed for five seconds between each task to mark transitions.

12.The experiment concludes either once all 14 tasks are completed or when 30
minutes have passed—whichever occurs first. At that point, the EEG cap is
removed, and the eye-tracking system is deactivated.

13. A post-questionnaire interview is conducted immediately after the experiment,
this process gathers insights into the participant's experience and preferences,

particularly regarding the use of flowcharts.
62

14.The participant is warmly thanked for their valuable contribution before they

leave the lab.

Experiment Preparation
Participant Material
Selection Preparation

Pilot Phase

@

Within-subject
design

Pre-Questionnaire
(Randomization) :
14 Comprehension Task Phase | g
Code with flowcharts
and
Code without flowcharts
Post-Experiment Interview

Document Results
and
Conclusion

End Experiment

Figure 4.3 Overview of the Experimental Procedure.

4.3 Data Collection

Once the study is complete, the collected data will be available in the following

formats:

1. Participants' responses: Answers and response times are saved in CSV files,
automatically generated by PsychoPy at the end of the study.

2. Eye-tracking data: The horizontal (X) and vertical (Y) gaze coordinates for
both eyes are recorded and stored in CSV files, generated using the Tobii Eye
Tracker SDK for Python.

3. EEG data: Brain activity is captured from 19 channels and saved in FIF forma;
this data is recorded in real time using CGX software.

4. Survey data: Responses to the post-questionnaire are collected in CSV files
using SoSci Survey, and the recorded responses are saved in M4A and MP3
formats.

63

5 Data Analysis and Results

The primary objective of this replication study is to examine whether using flowcharts
improves the code comprehension among novice programmers. Several evaluation
metrics were employed to assess this: visual attention, correctness, response time,
cognitive load and subjective preference. These metrics were selected to align with
those used in the original study, thereby ensuring comparability and consistency. Data
for each metric was collected using a controlled experimental design with a within-
subjects approach. This section outlines the procedures followed for data pre-
processing, characterization and analysis, with the aim of answering the research

question and validating the proposed hypotheses.
5.1 Data Preparation

This study aims to determine whether the analyzed data supports the hypothesis that
flowcharts have a positive impact on the code comprehension of novice programmers,
in line with the original study's findings. To ensure methodological alignment and
comparable results, this replication employed the same performance measures as the
original study: visual attention, cognitive load, response time, correctness, and
subjective preference. Data for these measures were collected using a controlled
experimental design with a within-subjects approach. This section outlines the steps
taken to pre-process and analyze the data in order to evaluate the proposed

hypotheses and answer the central research question.
5.1.1 Time and Correctness Data Processing

This phase involves cleaning, processing and transforming raw data into a structured
format that is suitable for analysis. This includes removing irrelevant entries,
addressing missing values, identifying and mitigating outliers, and minimizing potential

sources of bias, in order to ensure the integrity and reliability of the dataset.

The response time and correctness data were recorded in CSV files, with columns for
the participant ID, the code snippet, the response time and the correctness. The
'Correctness' column includes three values: "Yes' for correct answers, 'No' for incorrect

ones and 'Skip' for unanswered comprehension tasks.

64

Response time was measured using PsychoPy, with data collected across different
task routines. The first routine measures the time that a participant spends analyzing
the code before pressing the spacebar to proceed. The second routine is triggered
when the spacebar is pressed, displaying the four multiple-choice options.
For the purposes of this analysis, only the response time from the first routine was
considered, as this reflects the participant's initial comprehension efforts. The timing
data and labels indicating whether the answer was correct were manually extracted

from the raw CSV logs and compiled for statistical evaluation.
5.1.2 Eye Tracking Data Processing

The eye tracker data were extracted from CSV files, filtered, and time normalized.
Unnecessary columns were removed, and the gaze point coordinates were mapped to
the display coordinates according to the predefined screen resolution settings. The
column names were manually adjusted to match the format required by the 12MC
fixation classification algorithm. The I2MC was then applied to detect fixation events,
and the results were saved for further analysis [126]. The fixation data were then
integrated with AOIs, allowing AOIl-based analysis by determining which fixations

occurred within the predefined regions of the screen.

Finally, key eye-tracking metrics were calculated, including the number of fixations,
total fixation duration within flowcharts and code, fixations within specific AOls, and
transitions between AQOIs. Python scripts were used to process and extract data from
the CSV files.

5.1.3 EEG Data Processing

The raw EEG data file contains recordings of electrical brain activity from various
regions. First, any unnecessary channels were removed to ensure that only the
relevant signals were retained. The standard 10—20 montage was then applied to
ensure consistency [129]. Next, a bandpass filter (0.5—40 Hz) was applied to eliminate
unwanted signals outside the desired frequency range. Further cleaning of the data
was achieved by applying ICA algorithm to identify and remove artefacts such as eye

movements and muscle activity that could interfere with the analysis [130], [131].

65

The iClabel algorithm was then used to remove components unrelated to brain activity,
resulting in a more precise signal for subsequent analysis. Finally, the theta-to-alpha

ratio (TAR) was calculated to assess brain workload [69].
5.1.4 Data Cleaning

Data cleaning is applied to the results of previous steps to ensure accuracy. Any
observations marked as 'skipped' in the 'Accuracy' column are removed. Additionally,
comprehension tasks with response times of less than 10 seconds are excluded. The

final cleaned data are presented in the following sections.

5.2 Descriptive Statistics

Descriptive statistics are used in this section to effectively present the data collected.
Various visualization techniques such as tables, boxplots, histograms and percentage
calculations are used to highlight key findings. These methods help to summarize the

most relevant aspects of the results and support the evaluation of the hypotheses.

5.2.1 Eye Tracking Data Results

The eye-tracking data was examined to assess whether participants directed their
attention to the flowcharts during the comprehension tasks. In this study, each
participant completed tasks that involved either code snippets alone or code
accompanied by flowcharts. For each algorithm, the total fixation time on both the code
region and the flowchart area was calculated to evaluate visual attention patterns.
Table 5.1 presents the distribution of fixation times recorded during the comprehension
tasks. On average, participants spent 34.11 seconds fixating on code snippets when
no flowcharts were provided. In contrast, when flowcharts accompanied the code, the
average fixation time was 27.04 seconds for the code and 10.08 seconds for the
flowcharts. The fixation time over code snippets is reduced by 7.07 seconds (20.73%)
when flowcharts are present. The total fixation time over the stimulus increases by 3.01

seconds (8.82%) when flowcharts are present.

A minimum threshold of 10% of the total fixation time is used to determine whether a
flowchart was used in each observation. A flowchart was considered to be used if a
participant’s fixation time on it exceeded the defined threshold. Table 5.2 summarizes

66

the number of comprehension tasks in which flowcharts were actively utilized, along
with the corresponding fixation time distribution for each participant.

Code Alone Code in addition to Flowcharts
Algorithm Total Mean Total Mean Mean Mean
Respon | Fixation | Responses Fixation Fixation Fixation
ses Total (s) Time Time Total (s)
Code (s) Flowchart
(s)
binarySearch 2 19.1 5 55.36 0.87 56.23
bubbleSort 6 4.63 3 13.13 8.49 21.61
concatlists 4 22.31 4 35.86 14.33 50.19
countEvenNumbers 4 15.5 5 21.73 3.02 24.76
Ccrosssum 6 47.23 2 7.72 0 7.72
decimalToBinary 5 44.46 5 27.59 19.1 42.87
dropNumber 5 46.27 4 70.38 1.13 71.51
findTheLargest 1 19.23 9 13.07 10.58 22.47
firstAboveThreshold 5 30.25 5 25.19 23.59 48.78
hindex 5 30.92 6 32.83 21.79 49.15
integertoString 4 86.76 4 47.89 12.85 57.54
isPrime 7 27.2 4 23.91 5.75 29.67
power 5 8.29 5 9.74 6.67 15.08
removeDoubleCharacters 4 72.66 5 2.14 0 2.14
TOTAL 63 34.11 66 27.04 10.08 37,12
Table 5.1 Fixation Time Results
Code Alone Code with Flowcharts
Participant Total Mean Total No. of tasks Mean Mean
Responses Fixation | Responses were Fixation Fixation Time
Time (s) Flowcharts Time Code Flowchart (s)
where used (s)
Participant 1 7 29.31 6 2 33.51 16.53
Participant 2 4 41.96 5 4 26.54 23.94
Participant 3 5 46.6 6 5 1.18 5.6
Participant 4 7 29.98 6 2 31.44 2.92
Participant 5 6 15.46 7 5 23.75 10.98
Participant 6 5 13.42 6 1 23.2 3.2
Participant 7 7 13.99 7 0 41.6 0.48
Participant 8 5 42.13 5 3 21.26 18.86
Participant 9 7 34.39 7 2 23.97 2.95
Participant 10 5 90.89 6 0 51.64 2.72
Participant 11 5 33.88 5 4 11.89 31.77
Table 5.2 Distribution of Fixation Time across Participants.

The table shows that two participants used flowcharts extensively (Subjects 3 and 5).

Out of the total participants, five made use of flowcharts in five different comprehension

tasks. Three others referred to flowcharts in either four or three tasks.

Four participants used them only once or twice, while two did not refer to the flowcharts

at all. In total, flowcharts were utilized in 28 out of 66 comprehension tasks.
5.2.2 Response Time, Correctness and Cognitive Load Results

Table 5.3 presents the results related to correctness, response time, and cognitive load
for each algorithm under two different task conditions: using code alone and using code
accompanied by a flowchart. For the last condition, the analysis includes only the 28
instances in which participants actively engaged with the flowchart. It is also important
to note that the number of responses per algorithm varies, as participants were not

necessarily exposed to the same set of algorithms.

Code Alone Code with Flowcharts

Total Mean
Algorithm Respon | Correctn | Respon | Cog. Total Mean Cog.

ses ess se Time | Load | Respo Correctness Response | Load

in % (s) nses in % Time (s)

binarySearch 2 1 130.35 | 3.11 0 0 0
bubbleSort 6 0.67 82.55 | 3.71 2 1 71.06 3.29
concatlists 4 0.75 3447 | 3.53 2 0.5 84.35 3.13
countEvenNumbers 4 0.75 23.86 2.2 2 0.5 39.07 1.75
crosssum 6 0.5 57.73 3.7 0 0 0
decimalToBinary 5 0.8 62.57 | 3.37 2 0 86.96 3.15
dropNumber 5 0.8 87.05 | 4.08 0 0 0
findTheLargest 1 1 39.17 5 1 37.32 14
firstAboveThreshold 5 1 53.68 | 2.17 4 0.75 89.42 3.62
hindex 5 0.8 98.22 | 2.57 4 0.25 95.68 1.1
integertoString 4 0.5 107.66 | 4.14 1 1 97.04 3.24
isPrime 7 0.71 32.57 | 3.21 4 1 48.25 4.3
power 5 0.6 44,91 3.08 2 1 79.01 3.96
removeDoubleChara
cters 4 0.5 104.59 | 2.68 0 0 0
MEAN TOTAL 63 0.71 66.41 3.3 28 0.71 69.21 2.94

Table 5.3 Correctness, Response Time and Cognitive Load Results

Participants completed comprehension tasks with code alone in 10.00 - 154.74 s
(mean=66.41s) and comprehension tasks with flowcharts in 13.99 - 161.22
(mean=69.21s). This represents an increase of 2.8 s (4.22%) in the mean response
time when flowcharts were present. Furthermore, the median for tasks with code alone
is approximately between 45 and 50 seconds and for tasks with flowcharts is
approximately between 65 and 70 seconds. The results for the range of response times

are shown in Figure 5.1 below.
68

Response Time Comparison

160 A

140 A

=
N
o

100 4

f=]
=]

Time Response (seconds)
@

B
o

DT |

CODE ALONE CODE + FLOWCHART

Figure 5.1 Time Response Distributions.

The accuracy rate for the comprehension tasks was 0.71 (71%) in the code alone
condition and 0.71 (71%) when flowcharts were used. However, it is important to note
that the latter calculation is based on fewer observations, as flowcharts were not used
in every comprehension task where they were available. As illustrated in Figure 5.2
participants’ correctness varied significantly across algorithm types. The results show
that the correction rate for comprehension tasks was higher in 4 out of 14 algorithms

when flowcharts were used, lower in 9 algorithms, and equal in 1 algorithm.

1.2
1
0.8
0.6
0.4
0.2
0
& & S ¢ & & & & ©
o o
& & & @0 P & & & & & & & €
F & & F Q& V¥ T8 & N
P &S 2PN) @
LY < Q > XK @ g @
& ® & &S & X
o“& €>Q'O R « o‘\"‘<>
S «° O@Q
&

m Code Alone m Code with Flowchart

Figure 5.2 Task Accuracy Across Different Algorithms.

The cognitive load results are presented in Figure 5.3, using boxplots to show the
distribution of cognitive load values. The boxplots compare the cognitive load during

comprehension tasks involving code snippets alone with those involving flowcharts.
69

Cognitive load was measured using EEG signal analysis, specifically the ratio of the
relative power of the theta and alpha bands. The mean cognitive load for
comprehension tasks with code snippets alone is 3.3 and with code snippets in addition
to flowcharts is 2.94.

w

F

Cognitive Load

N

1- [

CODE ALONE CODE + FLOWCHART

Figure 5.3 Cognitive Load Distributions.

5.2.3 Post Interview Results

As described in the methodology, a post-interview questionnaire was conducted after
participants completed the comprehension tasks. The responses collected at this stage
provide an insight into the participants' subjective preferences regarding the use of
flowcharts along with code snippets. The data from the post-questionnaire will be used

to evaluate the fifth hypothesis:

1. Please indicate the tasks where you found the use of flowcharts to be helpful
and those where it is not. Participants provided varied feedback regarding the
usefulness of flowcharts across different algorithmic tasks. While some found
flowcharts beneficial for understanding complex logic structures, others either ignored
them entirely or found them unnecessary for simple tasks. Flowcharts were particularly
helpful in tasks involving nested loops and conditional structures, such as
FindTheLargest, where participants reported that the flowchart was easier to follow
than the code, allowing them to track the algorithm’s flow more intuitively. Similarly, in
Crosssum, flowcharts assisted in visualizing the step-by-step summation process, and
in integerToString, they aided in comprehending the sequence of operations. Decision-
70

making tasks also benefited from the presence of flowcharts, such as BinarySearch,
where some participants relied on them for condition verification, and
DecimalToBinary, where they provided a structured breakdown of the conversion
process. On the other hand, several tasks did not significantly benefit from the
presence of flowcharts. Some participants ignored the flowchart for BinarySearch
because they already recognized the structure from prior knowledge. In H-index, the
flowchart was deemed unhelpful in understanding the logic, and in Power Algorithm,

participants found the code easier to interpret compared to the flowchart.

Array-based operations such as RemoveDoubleCharacters also did not see significant
engagement with the flowchart, as participants felt that reading the code was sufficient.
Additionally, some participants expressed discomfort with using flowcharts, noting that
learning to reference them mid-experiment slowed them down, while others preferred

working solely with code due to familiarity with textual representations.

2. Could you describe the approach or strategy you used to solve the tasks?
Most participants initially focused on understanding the code using the top-down
approach and only referred to the flowchart when they encountered difficulties or
needed confirmation. This is consistent with previous research suggesting that novices
tend to rely on textual representations by default. Two participants reported switching
between the code and the flowchart, particularly when the code was long or unfamiliar.
Additionally, one participant highlighted that flowcharts were especially beneficial for
understanding the flow of algorithms, particularly in tasks involving loops and
conditional structures. They noted that, in certain cases, the flowchart offered more
clarity than the code itself due to its structured layout, which was especially helpful

when memorization was challenging.

3. How much did you refer to the flowcharts and how much to the code?
Participants were asked to indicate how often they referred to flowcharts versus code.
The responses showed a wide range of preferences. Three participants indicated that
they did not refer to the flowchart at all, while four participants indicated a stronger
preference for using flowcharts over code snippets. In addition, six participants
indicated that they primarily relied on code, but occasionally used flowcharts. On

average, flowcharts were referenced in approximately 30-40% of tasks.

71

4. For which task did you spend more time on, when was there a flowchart
present or not? Most participants reported spending more time on tasks when a
flowchart was present because they had to process two different representations
simultaneously. Two participants reported that flowcharts helped them save time,
particularly on complex tasks involving nested loops and conditions. A further two
participants saw no significant difference in time taken with or without a flowchart. In
addition, five participants reported that they spent more time on certain tasks, such as
IntegerToString, but attributed this to the complexity of the algorithm rather than the
presence of the flowchart. For tasks involving loops, participants found that the extra

time spent was unrelated to the use of flowcharts.

5. Please choose on a scale from 1 to 5, did the presence of flowcharts in the
task impact your understanding of the source code? Participants rated the impact
of flowcharts on their understanding of source code using a five-point Likert scale. The
responses revealed a mixed perception of the usefulness of flowcharts. Three
participants found flowcharts unhelpful, while five found them somewhat helpful. Two
found them helpful, and one found them very helpful. Notably, no participant rated

flowcharts as extremely helpful.

6. If flowcharts were not provided in the tasks, would you have preferred their
inclusion to aid task-solving? Participants were also asked whether they would
have preferred flowcharts if they had not been included in the tasks. The responses
show a variety of preferences. Two participants strongly agreed, stating that flowcharts
would have been very helpful in aiding understanding, especially for long tasks and
those involving loops. Six participants somewhat agreed, acknowledging that
flowcharts could clarify code structure and flow, particularly for visual learners, but were
not essential. Three participants remained neutral, stating that flowcharts were useful

in some cases, but not consistently helpful in all tasks.

7. Did you use flowcharts as a learning tool in your introductory programming
classes? The responses indicated that only one participant had encountered
flowcharts in all introductory courses, while another had used them in several, but not
all, courses. Two participants reported using flowcharts in only one course, while the

majority stated that flowcharts were not part of their programming education.

72

5.3 Hypotheses Testing

Once the data have been summarized, significance tests are carried out to determine
whether the observed differences in the dependent variable are statistically significant.
These tests assess whether variations in the independent variable (e.g. the presence
or absence of a flowchart with the code snippet) have a measurable effect on the
dependent variables. Since differences can occur due to random variation, significance

tests help to assess whether the observed results are meaningful.

The null hypothesis assumes that there is no meaningful difference in the dependent
variable across experimental conditions, whereas the alternative hypothesis (H)
suggests the presence of a statistically significant difference. When the calculated p-
value representing the probability of observing the data under the null hypothesis falls
below the standard significance level of 5%, the null hypothesis is rejected. This
indicates that the observed difference is unlikely to have occurred by chance.
Conversely, if the p-value exceeds this threshold, the null hypothesis cannot be
rejected, implying that any differences may be due to random variation rather than a
true effect [125]. To evaluate the data, paired t-tests were applied for normally
distributed variables, such as fixation time. For data that did not meet normality
assumptions, non-parametric Wilcoxon signed-rank tests were employed. A

significance level of p < 0.05 was used for all statistical tests.
Ho1: Participants do not refer to flowcharts in addition to code snippets.

Eye-tracking data showed that participants spent an average of 10.08 seconds fixating
on flowcharts, which accounted for 27.16% of the total fixation time when both code
and flowcharts were present. To determine whether participants were actively
referencing flowcharts, a paired t-test was conducted comparing fixation time on code
alone to fixation time on flowcharts. Therefore, it calculates the difference between the
paired values (Fixation time on code when a flowchart was present and Fixation time
on flowcharts) for each participant, then computes the mean difference and its
standard deviation. The resulting p-value (0.0015) was significantly less than 0.05,
indicating a statistically significant difference in fixation times. Therefore, the null
hypothesis is rejected, leading to the conclusion that participants referred to flowcharts

in addition to code snippets. This finding confirms that flowcharts were actively used

73

as a visual aid during the comprehension tasks, although they received less fixation

time compared to code snippets.

Ho2: There is no significant difference in response time of comprehension

tasks due to the use of flowcharts.

The analysis of response times indicates that participants took an average of 66.41
seconds to complete comprehension tasks with code snippets alone, compared to
69.21 seconds when flowcharts were included. This represents a 4.22% increase in
mean response time when flowcharts were introduced. The Shapiro-Wilk test was
used to determine whether the response times results followed a normal distribution.
As the data were not normally distributed, a non-parametric test, the rank sum test,
was chosen for analysis. The rank sum test was used to compare the response times
between the code alone condition and the code with flowchart condition. The test
yielded a p-value of 0.4389, which is greater than 0.05. This means that there is no
statistically significant difference in response times between the two conditions. As a
result, the null hypothesis Ho2 is accepted as this difference is not statistically
significant. Therefore, the results suggest that the inclusion of flowcharts does not have

a significant effect on the time taken to complete comprehension tasks.

Ho3: There is no significant difference in correctness of comprehension tasks

due to the use of flowcharts.

The correctness analysis shows that participants achieved a correctness rate of 71%
when solving comprehension tasks using code snippets alone and 71% when using
flowcharts. This suggests that the correctness rate remained the same regardless of
the presence of flowcharts. A chi-squared test was performed to determine whether
this difference was statistically significant. The test compared correctness rates
between comprehension tasks performed with code snippets alone and those
performed with flowcharts. The results yielded a Chi-squared statistic of 0.0 and a p-
value of 1.0. Therefore, the null hypothesis Hq; is accepted. Furthermore, the effect
size Phi = 0.0 suggests that the inclusion of flowcharts has no measurable effect on
correctness. Therefore, the results of this study do not support the claim that flowcharts

improve correctness in comprehension tasks.

74

Ho4: There is no significant difference in cognitive load during comprehension

tasks due to the use of flowcharts.

The Shapiro-Wilk test was carried out for both conditions. The test gave a p-value of
0.0728 for the code alone condition and a p-value of 0.0747 for the code with flowchart
condition. As both p-values are greater than 0.05, this confirms that the data are
normally distributed. The t-test was performed to determine if there was a significant
difference in cognitive load between the code alone and code with flowchart conditions.
The test yielded a p-value of 0.5209, which is greater than the 0.05 significance level.
Therefore, the null hypothesis Hy, is accepted. This suggests that the use of flowcharts
has no significant effect on reducing or increasing cognitive load during comprehension

tasks.
Ho5: Participants do not prefer flowcharts in addition to code snippets.

The responses showed that 8 out of 11 participants (72.7%) stated a preference for
flowcharts, indicating that most participants found them beneficial in aiding
comprehension and problem-solving. Based on this maijority preference, The null

hypothesis Hys is rejected.

5.4 Answer to Research Question

The research question, as outlined in the methodology section, is as follows:

RQ: Can the impact of flowcharts on novices' program comprehension be verified in a

replication study under similar experimental conditions?

The results of this replication study indicate that the impact of flowcharts on novice
program comprehension could not be fully verified under conditions similar to those of
the original study but was only partially confirmed. The results are consistent with the
original study in that participants referred to flowcharts in addition to code snippets, as
confirmed by the visual attention analysis. In addition, the difference in cognitive load
during comprehension tasks due to the use of flowcharts was not statistically
significant, although it was slightly lower when flowcharts were presented alongside

code snippets. Furthermore, participants' preference for flowcharts over code snippets

75

was confirmed. However, the integration of flowcharts into the comprehension process
did not lead to an improvement in correctness rates, and response time did not

increase significantly when flowcharts were used.

76

6 Discussion

This chapter presents the interpretation of the study results, considering both
confirmed and rejected statistical hypotheses. The following subsections discuss visual
attention, response time, correctness, and cognitive load in relation to the research
question: What is the impact of flowcharts on novice code comprehension? Finally, the

potential threats to construct, internal, and external validity are addressed.
6.1 Visual Attention

The hypothesis relating to this measurement factor was formulated in the methodology

section as follows:

H1. Participants refer to flowcharts in addition to code snippets.

The results of the visual attention data show that participants actively referred to the
flowcharts during the comprehension tasks and the difference in response time when
flowcharts were presented was significant. Flowcharts were actively used in 28 out of
66 comprehension tasks, with an average fixation time of 10.08 seconds, which
accounted for 27.16% of the total fixation time when flowcharts were present alongside
code snippets. Notably, participants spent less time fixating on code snippets in these
cases, suggesting that novices tend to seek alternative resources beyond textual code
when attempting to understand algorithms. However, the flowchart representing the
crosssum and removeDoubleCharacters algorithms was not used extensively. This
behavior is consistent with existing research and the original study, which links reliance
on additional visual aids with a lack of comprehension and problem-solving skills.
When faced with difficulties interpreting algorithms in a programming language,
novices seek external aids that provide additional context. The results of this study
suggest that flowcharts are a practical approach to support, particularly when code
comprehension proves challenging. In addition, feedback from participants confirmed
the usefulness of flowcharts for understanding the flow of a program. Several
participants noted that the flowcharts supported their ability to visualize how the
algorithm executes, particularly in cases involving complex, lengthy, or unfamiliar code.

The structured presentation of the flow allowed for a clearer breakdown of iterative

a4

calculations and logical steps, making it easier to follow the progress and behavior of

some algorithms.

Eye-tracking data further revealed that two participants did not engage with the
flowcharts at all. One possible explanation is that interpreting a new visual format of
algorithmic content may have been too cognitively demanding or time-consuming for
them, prompting a preference for the textual code. Alternatively, this behavior may
reflect individual learning styles particularly the distinction between visual and verbal
learners. While visual learners tend to favor diagrams, flowcharts, timelines, and
interactive elements, verbal learners may be more comfortable processing information
through text. Verbal learners retain and process information more effectively through
reading and textual explanations. It may be that the participants who did not refer to
flowcharts were verbal learners who found textual representations more appropriate
for their understanding. In addition, they may have been unwilling to engage with an

unfamiliar tool, preferring a representation with which they were more familiar.

Another possible reason for the lack of use of flowcharts is the simplicity of the task
and the complexity of the algorithm. If the algorithms were relatively simple,
participants may have felt that they did not need the additional support of flowcharts.
The original study suggests that when the complexity of the algorithm is low, textual
representations may be sufficient, reducing the need to refer to flowcharts. This
suggests that individual learning preferences, familiarity with visual aids and the
complexity of the task all play a crucial role in determining whether flowcharts are used

as an aid to comprehension.

An analysis of the eye-tracking data in this replication study identified four distinct
patterns of flowchart use, extending the three patterns originally defined. While Pattern
1 (Balanced Usage), Pattern 2 (Code-Dominant) and Pattern 3 (Flowchart-Dominant)
were consistent with the original findings, a fourth pattern emerged, indicating a unique
behavioral shift in some participants.

Pattern 1: Balanced Usage, participants alternated between the code snippet and the
flowchart, using both representations to construct their understanding. This pattern

suggests that the flowchart served as secondary aid rather than a primary source of

78

understanding. Participants exhibiting this behavior were likely to refer to the flowchart

when they had difficulty understanding the algorithm.

Pattern 2: Code-Dominant, participants spent most of their fixation time on the code
snippet, occasionally glancing at the flowchart for confirmation or clarification. This
behavior is characteristic of individuals who are more comfortable with textual
representations and who use flowcharts as a supplementary tool rather than a
necessity. Alternatively, participants following this pattern may have already formed a
potential answer to the comprehension task and were only looking at the flowchart to

verify or confirm their hypothesis.

Pattern 3: Flowchart dominant, participants focused primarily on the flowchart and only
occasionally looked at the code snippet. This suggests that for these individuals the
flowchart was the primary resource for understanding, with the code snippet playing a
minimal role. This pattern suggests that flowcharts may provide a more efficient
approach for some participants, allowing them to solve tasks effectively with some

fixation on the code.

Pattern 4: Flowchart Exclusive Usage, a novel pattern unique to this replication study,
where some participants relied entirely on the flowchart and completely ignored the
code snippet. Several factors could explain this behavior: Task complexity, If the
flowchart provided sufficient clarity, participants may not have felt the need to refer to
the code; Strong visual learning preference. Some participants may have been highly
visual learners who found flowcharts easier to interpret; Fatigue or order effects, when
tasks appeared later in the experiment, participants may have defaulted to using
flowcharts as a faster alternative to processing code. Heatmaps of some of the

comprehension tasks are shown in Table 6.1

79

Pattern1

Pattern2

Pattern 3

Pattern 4

Table 6.1 Usage Patterns of Flowcharts.

80

6.2 Response Time

The hypothesis corresponding to this measurement factor was defined in the

methodology section as follows:
H2: Participants using flowcharts take less time to complete the tasks.

Response time analysis showed that participants took an average of 66.41 seconds to
complete comprehension tasks using code snippets alone, whereas the presence of
flowcharts resulted in an average response time of 69.21 seconds, an increase of
4.22%. However, statistical tests confirmed that this difference was not statistically
significant. These results contrast with those of the original study, where the difference
in response time between code snippets alone and code with flowcharts was found to
be statistically significant, with participants taking 34.26% more time when using
flowcharts. However, in this replication study, the results suggest that students did not
take significantly longer when the flowchart was presented alongside the code; rather,
for some tasks, the flowchart was simply ignored. In particular, the mean response
time for four algorithms (e.g. binarySearch, crosssum, dropNumber and
removeDoubleCharacters) was recorded as zero, indicating that participants did not
engage with the flowcharts in these tasks. Some students expressed a preference for
relying solely on the code, citing discomfort with using a new tool, while others reported
that once they became familiar with the flowcharts, they found them useful. As noted
in the visual attention analysis, some students relied solely on the flowchart
representation and ignored the code altogether, which may explain why the response
time differences between comprehension tasks using code snippets alone and

comprehension tasks using flowcharts were not significant.

In the original study, novice programmers may have initiated two parallel
comprehension processes when presented with both code snippets and flowcharts. In
such cases, they attempted to follow the flow of the algorithm in both representations,
switching between them when they encountered difficulties or needed additional
clarity. This process allowed them to simultaneously check their answers against the
alternative representation. Still, the additional time novice programmers spend
engaging with flowcharts alongside code snippets may be worthwhile if it contributes

to the formation of more accurate mental models, thereby enhancing their overall

81

understanding. That said, the extent to which this visual aid is utilized can vary
significantly based on individual preferences and prior experience, some may rely on

it heavily, while others may choose to disregard it entirely.

6.3 Correctness

The hypothesis corresponding to this measurement variable was stated in the

methodology section as follows:
H3: Participants using flowcharts answer with a higher correction rate.

The results of the replication study show that the correctness rate for the
comprehension tasks was 0.71 (71%) in both conditions, code alone and code with
flowcharts. A chi-squared test confirmed that there was no statistically significant
difference in correctness between the two conditions, suggesting that the presence of

flowcharts had no measurable effect on participants' accuracy in completing the tasks.

This finding contrasts with the original study, where the use of flowcharts resulted in a
significant improvement in correctness, from 50% with code snippets alone to 68%
when flowcharts were used, an improvement of 18%. One possible explanation for this
discrepancy is the way in which the participants interacted with the flowcharts. In the
original study, participants reported that flowcharts facilitated program comprehension
by clarifying algorithmic flow, particularly in selection and iteration structures. In
addition, participants in the original study used flowcharts as a verification tool, allowing
them to refine their understanding before submitting their responses. This iterative

process may have contributed to the significant improvement in accuracy.

In contrast, the replication study suggests that while some participants may have
benefited from flowcharts, others may have ignored them completely, as mentioned in
the discussion of response times above. Furthermore, while certain tasks (e.g., power,
isPrime, integertoString, findTheLargest, bubbleSort) were always answered correctly,
their accuracy rates were not statistically significant. Even when participants used
flowcharts, they were not necessarily effective in helping them find or confirm the
correct answer. Table 5.3 Correctness, Response Time and Cognitive Load Results
shows that the correctness rate for solving certain tasks (e.g., binarySearch, crosssum,

decimalToBinary, dropNumber, removeDoubleCharacters) using flowcharts was 0%.

82

This suggests that the flowcharts were not seen as an aid to understanding

comprehension tasks in this study.

These findings suggest that the presence of flowcharts does not necessarily improve
accuracy unless participants actively engage with them in a structured way. The
divergence from the original study may be due to differences in participants' familiarity
with flowcharts, cognitive strategies or task complexity. While flowcharts provide an
additional layer of information, their effectiveness appears to depend not only on their
availability, but also on how they are used and whether participants choose to use
them as a support tool. This highlights the need for further research to identify the
conditions under which flowcharts are most beneficial for novice programmers in

comprehension tasks.
6.4 Cognitive Load

The hypothesis associated with this measurement factor was established in the

methodology as follows:

H4: Participants using flowcharts have a lower cognitive load when completing the

tasks.

The cognitive load analysis in this study shows that participants had a mean cognitive
load of 3.3 when using code snippets alone and 2.94 when using flowcharts in the
comprehension tasks. Although the cognitive load appeared to be slightly lower when
flowcharts were present, statistical analysis confirmed that this difference was not
significant. This is consistent with the original study, which also found no significant
increase in cognitive load when flowcharts were introduced. The presence of visual
aids may raise concerns that they may increase cognitive load. An important
observation is that participants referred to flowcharts when they had difficulty
understanding an algorithm or a long algorithm. This suggests that novices were able
to use flowcharts strategically to aid their understanding without incurring additional
cognitive load. Furthermore, despite their initial unfamiliarity with flowcharts,
participants learned how to interpret them through the instructions in the introduction
to the experiment. The original study highlighted the low learning curve of flowcharts,

making them an effective tool for novice programmers. The results of this study support

83

this perspective, demonstrating that flowcharts provide an intuitive means of

understanding algorithmic flow without imposing a significant cognitive load.

6.5 Flowchart Preferences

The hypothesis pertaining to this measurement factor was defined in the methodology

as follows:
Hb5: Participants prefer to use flowcharts in addition to code.

The results of the post-interview responses indicate that the majority of participants
preferred to use flowcharts in addition to code snippets, which is consistent with the
results of the original study. In the original study, 7 out of 11 participants expressed a
preference for flowcharts, whereas in this study, 8 out of 11 participants favored their
inclusion. This consistency suggests that novice programmers tend to prefer visual
aids. However, while the overall preference remained similar, the extent to which

participants engaged with flowcharts differed between the two studies.

In the original study, participants not only expressed a preference for flowcharts, but
also demonstrated a higher rate of accuracy when using them. They also reported that
flowcharts helped them solve comprehension tasks faster by reducing ambiguity and
allowing them to check their answers. In this replication study, although most
participants expressed a preference for flowcharts, their actual use varied, with some
relying on them heavily and others choosing to ignore them entirely. Where several
participants stated that the additional presentation did not necessarily improve their
efficiency, and in some cases, it increased their reaction time as they processed two
different forms of the algorithm. In addition, one participant mentioned that it was
difficult to work with an unfamiliar tool. A key difference between the two studies is that
in the original study the flowcharts appeared to play a more central role in
understanding, whereas in the replication study few participants actively used the
flowcharts to understand the algorithm better, while others preferred to have the
flowcharts alongside the code to check their answers. Overall, these findings confirm
that flowcharts are generally preferred as an aid to understanding, but their
effectiveness varies depending on individual problem-solving strategies and task

complexity. In addition, participants in this study suggested that flowcharts should be

84

included as a learning tool in introductory programming courses to help other students
understand code more effectively, and that they would have liked to have had the

opportunity to use them in their previous programming courses.
6.6 Threads to Validity

Threats to validity refer to potential problems or biases that arise during data collection,
processing, or analysis that may affect the accuracy and credibility of the study's
conclusions. These threats are often influenced by factors related to the experimental
environment, participant variability, measurement techniques, or external conditions

that may confound the intended results.
6.6.1 Construct Validity

Construct validity refers to the extent to which the study accurately measures the
concept it seeks to investigate [112]. In this study, several factors posed potential
threats to construct validity, including distortion of the EEG signal, guesswork based
on response time, and hypothesis guessing. During EEG data processing, some
signals were distorted due to the high sensitivity of EEG signals to noise and
interference from other physiological electrical signals, such as heartbeat activity. In
addition, participants' movements during the experiment introduced signal artefacts
that affected the accuracy of the data. To minimize these distortions, signal processing
filters were applied during data analysis; however, the removal of unwanted artefacts
also resulted in some signal loss, potentially affecting the measurement of cognitive
load [132]. Independent Component Analysis (ICA), recognized as one of the most
effective methods for cleaning EEG signals, was applied to improve signal validity and
increase the reliability of cognitive load measures [131].

Another threat to construct validity arises from the possibility that short response times
may not always reflect accurate understanding, but rather guesswork. To address this
issue, participants were given the option to skip tasks if they were uncertain, thus
reducing the likelihood of random responses. In addition, a minimum response time
threshold and eye fixation duration analysis were used to verify that participants were
actively engaged with the flowchart or code before responding. These measures

ensured that only meaningful responses contributed to the study results, thereby

85

reducing the risk of response bias due to guessing. Furthermore, hypothesis guessing
poses a social threat to construct validity, as participants may attempt to infer the
purpose of the study and adjust their responses accordingly [112]. To mitigate this,
participants were explicitly informed that they could skip a question if they were unsure,
thus reducing the likelihood of biased responses due to guessing. However, this
instruction may have led participants to perceive the study not as an assessment of
their programming skills, but rather as an assessment of the impact of flowcharts on

code comprehension.

As a result, some participants may have consciously or unconsciously aligned their
responses with their assumptions about the study's hypothesis, either positively or
negatively. To address this concern, the first question in the post-experiment interview
was designed to assess where participants found the flowcharts useful and where they
did not. Participants were shown all the flowchart tasks they had completed and asked
to give reasons for their choices. This approach provided a deeper insight into their
cognitive processes and helped to identify potential biases introduced by hypothesis

guessing.
6.6.2 Internal Validity

Internal validity refers to whether the observed effects in the study are really caused
by the independent variable (i.e., the flowchart) or whether they are caused by
confounding factors [112]. A potential threat to internal validity is stress caused by
external factors, such as exam periods or personal pressures, that affect participants'
cognitive performance. To minimize this risk, the study was not conducted during exam
periods, but rather before or after to avoid this effect. In addition, participants were
allowed to choose a convenient time to take part, ensuring that they were able to

complete the study without external pressure.

Another factor that could have affected the results is fatigue. Some participants had
long and thick hair, which increased the time it took to set up the EEG and, in some
cases, led to boredom. Unfortunately, this cannot be controlled experimentally. In
addition, the motivation of the participants may have influenced the results. As all
participants were volunteers, they were likely to be more motivated and engaged than

a sample of the general population [112].

86

Volunteers tend to be more interested, which may lead to better task performance
compared to a less intrinsically motivated group. In the literature, some students are
identified as textual learners, while others rely more on visual aids and are classified
as visual learners. These differences introduce variations in cognitive strategies that
could influence the results of the study. Future research could explore participants'
preferred learning styles (visual vs. textual) and analyze whether the effectiveness of

flowcharts varies based on these preferences.
6.6.3 External Validity

External validity refers to the extent to which the findings of a study can be generalized
beyond the specific conditions of the experiment, such as different populations,
settings, and time frames [112]. All participants were novice students from the same
university. While this controlled for within-group variability, reducing potential bias, it
also limits the generalizability of the findings to other populations, such as professional

programmers or novice learners from different educational backgrounds [112]._

Another limitation is the nature of the programming tasks. Participants were asked to
solve short code snippets, which are consistent with introductory programming
courses. However, real-world programming environments, particularly in industry,
often involve longer, more complex code bases. This discrepancy raises concerns
about whether the effectiveness of flowchart observed in this study would hold up in

practical, large-scale software development contexts.

Furthermore, as highlighted in the original study, the experiment, such as this study,
was conducted exclusively in the Java programming language. However, as the code
snippets used in this study were not highly complex, it is unlikely that changing the

programming language would have had a significant impact on comprehension.

87

7 Conclusion

Research has consistently shown that novice programmers often struggle to develop
the mental models necessary for effectively understanding programs and solving
problems [13]. They encounter considerable difficulties in grasping the flow, structure
and purpose of algorithms, hindering their ability to translate problem specifications
into working code. Motivated by these challenges, the present study aimed to replicate
and extend prior research investigating the impact of algorithmic visualizations

specifically flowcharts on novice program comprehension.

This controlled replication study employed eye tracking, EEG monitoring and
structured interviews to gain multifaceted insights into the cognitive processes
involved. Novices were asked to complete comprehension tasks with code snippets
alone or with code snippets accompanied by flowcharts. Metrics such as fixation time,
cognitive load, response time, accuracy, and subjective preference were

systematically evaluated.

The results of the present study are partly consistent with the original findings [24]. In
both studies, participants actively used flowcharts during comprehension tasks, as
confirmed by eye-tracking data. Participants also consistently expressed a subjective
preference for the inclusion of flowcharts, indicating that they perceived them as
beneficial aids in understanding program logic. However, while the original study
reported a statistically significant improvement in accuracy with flowcharts, this
replication found no statistically significant difference in accuracy rates between

conditions.

Similarly, response time did not differ significantly across the two conditions in this
replication, whereas the original study found that using flowcharts significantly

increased response time.

Notably, no significant effect on cognitive load was observed in either study. This
suggests that, although the participants positively received and used flowcharts during
the comprehension, they did not necessarily ease cognitive processing or speed up

task completion for novice programmers.

88

Interestingly, despite the lack of improvements in correctness or response time in the
replication study, participants' preference for flowcharts indicates that they might
perceive them as a helpful scaffold, perhaps offering psychological comfort or reducing

the perceived complexity of the task.

The discrepancies between the original and replication results highlight several
important considerations. First, replication in software engineering research,
particularly studies involving human behavior, remains inherently challenging.
Variability in participant characteristics, sample size limitations, changes in
technological environments, and the inevitable loss of direct access to original

researchers complicate replication efforts [133].

This mirrors broader trends observed in the "replication crisis" across fields like
psychology and empirical software engineering, where even carefully conducted

replications often fail to reproduce original findings exactly [134].

Furthermore, this study encountered some technical challenges due to updates in
libraries and tools between 2022 and 2024/25. This illustrates the rapid pace of
technological change in software engineering environments. These factors, alongside
different participant demographics and a small sample size, may have contributed to

the observed variations.

In conclusion, although flowcharts do not lead to significant improvements in objective
measures of program comprehension, novice programmers nevertheless appreciate
them as valuable supportive tools. Integrating them into introductory programming
courses could enhance students' subjective learning experiences and perceived
confidence. However, they should not be viewed as a standalone solution, but rather

as one component of a broader pedagogical strategy.

Further research is necessary to better understand the true impact of flowcharts on
novice learners, and to validate their effectiveness in different educational contexts.
This should include more extensive replication studies.

89

7.1 Future Work

Based on the findings and challenges encountered in this replication study, the

following avenues for future research are proposed:

¢ Investigate the effect of flowcharts on code comprehension at different levels of
complexity and among programmers with varying levels of experience.

e Comparative studies could examine the effectiveness of various visual aids,
such as pseudocode, UML diagrams and animated traces, compared with
traditional flowcharts.

e Expanded sample sizes and diversity, by involving students from different
universities and educational backgrounds, would increase the generalizability
of results and enhance consistency, reproducibility, and transparency across
empirical studies.

e Expert versus novice comparisons could provide valuable insights into how
visualization tools are used differently across experience levels.

e Involving students from different universities and educational backgrounds
would expand the sample size and diversity, making the results more
generalizable and enhancing the consistency, reproducibility and transparency
of empirical studies.

e Incorporate a wider range of tools and methodologies for measuring program
comprehension, such as functional magnetic resonance imaging (fMRI), recall
tasks, think-aloud protocols, and debugging exercises.

e Controlled intervention studies could be conducted by designing two separate
courses: one in which flowcharts are systematically integrated into the
curriculum, and another in which flowcharts are not used. This approach would
allow researchers to observe and compare the long-term academic outcomes

between the two groups.

Addressing these areas systematically will enable future research to determine the role
of algorithmic visualizations in novice programming education more effectively. This

will contribute to the evidence-based enhancement of computer science pedagogy.

90

Bibliography

[1] B. Boehm, “A view of 20th and 21st century software engineering,” in Proceedings
of the 28th international conference on Software engineering, Shanghai China:
ACM, May 2006, pp. 12—-29. doi: 10.1145/1134285.1134288.

[2] R. Brooks, “Towards a theory of the comprehension of computer programs,” Int. J.
Man-Mach. Stud., vol. 18, no. 6, pp. 543-554, 1983, Accessed: Apr. 21, 2025.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020737383800315

[3] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in programmer
behavior: A model and experimental results,” Int. J. Comput. Inf. Sci., vol. 8, no. 3,
pp. 219-238, Jun. 1979, doi: 10.1007/BF00977789.

[4] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognit. Psychol., vol. 19, no. 3, pp. 295—
341, Jul. 1987, doi: 10.1016/0010-0285(87)90007-7.

[5] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework,” J. Vis. Lang. Comput., vol. 7,
no. 2, pp. 131-174, 1996, Accessed: Apr. 21, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900099

[6] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs:
an empirical study,” Commun. ACM, vol. 26, no. 11, pp. 853—-860, Nov. 1983, doi:
10.1145/182.358436.

[7] T. A. Standish, “An essay on software reuse,” IEEE Trans. Softw. Eng., no. 5, pp.
494-497, 1984, Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/5010272/

[8] J. Siegmund, “Program comprehension: Past, present, and future,” in 2016 IEEE
23rd international conference on software analysis, evolution, and reengineering
(SANER), IEEE, 2016, pp. 13—-20. Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7476769/

[9] C. Areias and A. Mendes, “A tool to help students to develop programming skills,”
in Proceedings of the 2007 international conference on Computer systems and
technologies - CompSysTech ’07, Bulgaria: ACM Press, 2007, p. 1. doi:
10.1145/1330598.1330692.

[10] A. McGettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Lovegrove, and K. Mander,
“Grand challenges in computing: Education—a summary,” Comput. J., vol. 48, no.
1, pp. 42-48, 2005, Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8140304/

[11] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bull., vol. 39, no. 2, pp. 32-36, Jun. 2007, doi:
10.1145/1272848.1272879.

[12] J. Figueiredo and F. Garcia-Penalvo, “Teaching and learning tools for
introductory programming in university courses,” in 2021 International Symposium
on Computers in Education (SIIE), IEEE, 2021, pp. 1-6. Accessed: Apr. 21, 2025.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9583623/

[13] E. Lahtinen, K. Ala-Mutka, and H.-M. Jarvinen, “A study of the difficulties of
novice programmers,” ACM SIGCSE Bull., vol. 37, no. 3, pp. 14-18, Sep. 2005,
doi: 10.1145/1151954.1067453.

91

[14] Y.-F. Shih and S. M. Alessi, “Mental Models and Transfer of Learning in
Computer Programming,” J. Res. Comput. Educ., vol. 26, no. 2, pp. 154-175, Dec.
1993, doi: 10.1080/08886504.1993.10782084.

[15] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, A. Al-Ghamdi, and F. Saleem, “The
effect of automatic assessment on novice programming: Strengths and limitations
of existing systems,” Comput. Appl. Eng. Educ., vol. 26, no. 6, pp. 2328—2341, Nov.
2018, doi: 10.1002/cae.21974.

[16] K. M. Yusoff, N. S. Ashaari, T. Wook, and N. M. Ali, “Analysis on the
requirements of computational thinking skills to overcome the difficulties in learning
programming,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 3, pp. 244-253, 2020,
Accessed: Apr. 21, 2025. [Online]. Available:
https://www.academia.edu/download/87004513/Paper_29-

Analysis_on_the Requirements_of Computational _Thinking_Skills.pdf

[17] O. Kurniawan, C. Jégourel, N. T. S. Lee, M. De Mari, and C. M. Poskitt, “Steps
Before Syntax: Helping Novice Programmers Solve Problems using the PCDIT
Framework,” presented at the Hawaii International Conference on System
Sciences, 2022. doi: 10.24251/HICSS.2022.121.

[18] S. Garner, “Reducing the Cognitive Load on Novice Programmers.,” Jun. 2002.
[Online]. Available: https://files.eric.ed.gov/fulltextED477013.pdf

[19] F. Schmidt, “Detecting and Correcting the Lies That Data Tell,” Perspect.
Psychol. Sci.,, vol. 5, no. 3, pp. 233-242, May 2010, doi:
10.1177/1745691610369339.

[20] M. E. Tudoreanu, “Designing effective program visualization tools for reducing
user’s cognitive effort,” in Proceedings of the 2003 ACM symposium on Software
visualization, San Diego California: ACM, Jun. 2003, p. 105. doi:
10.1145/774833.774848.

[21] C. Evans and N. J. Gibbons, “The interactivity effect in multimedia learning,”
Comput. Educ., vol. 49, no. 4, pp. 1147-1160, 2007, Accessed: Apr. 21, 2025.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131506000285

[22] A. E. Zimmermann, E. E. King, and D. D. Bose, “Effectiveness and Utility of
Flowcharts on Learning in a Classroom Setting: A Mixed-Methods Study,” Am. J.
Pharm. Educ., vol. 88, no. 1, p. 100591, Jan. 2024, doi:
10.1016/j.ajpe.2023.100591.

[23] R. Levy, M. Ben-Ari, and P. Uronen, “The Jeliot 2000 program animation
system,” Comput. Educ., vol. 40, pp. 1-15, Jan. 2003, doi: 10.1016/S0360-
1315(02)00076-3.

[24] “2022 Master - Effect of Flowcharts on Code Comprehension of Novice
Programmers.pdf.” Accessed: Apr. 21, 2025. [Online]. Available: https://www.tu-
chemnitz.de/informatik/ST/lectures/Masters%20Thesis%20Pdfs/2022%20Master
%20-
%20Effect%200f%20Flowcharts%200n%20Code%20Comprehension%200f%20
Novice%20Programmers.pdf

[25] E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,”
IEEE Trans. Softw. Eng., vol. SE-10, no. 5, pp. 595-609, Sep. 1984, doi:
10.1109/TSE.1984.5010283.

[26] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring Program
Comprehension: A Large-Scale Field Study with Professionals,” IEEE Trans.
Softw. Eng., vol. PP, pp. 1-1, Jul. 2017, doi: 10.1109/TSE.2017.2734091.

92

[27] Y. Cai, L. Xiao, R. Kazman, R. Mo, and Q. Feng, “Design Rule Spaces: A New
Model for Representing and Analyzing Software Architecture,” IEEE Trans. Softw.
Eng., vol. 45, no. 7, pp. 657—682, Jul. 2019, doi: 10.1109/TSE.2018.2797899.

[28] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics and
Biases: Biases in judgments reveal some heuristics of thinking under uncertainty.,”
Science, vol. 185, no. 4157, pp. 1124-1131, Sep. 1974, doi:
10.1126/science.185.4157.1124.

[29] E. Soloway, B. Adelson, and K. Ehrlich, “Knowledge and Processes in The
Comprehension of Computer Programs,” in The Nature of Expertise, Psychology
Press, 1988.

[30] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring
programming experience,” in 2012 20th IEEE International Conference on Program
Comprehension (ICPC), Passau, Germany: IEEE, Jun. 2012, pp. 73-82. doi:
10.1109/ICPC.2012.6240511.

[31] S.Wiedenbeck, “The initial stage of program comprehension,” Int. J. Man-Mach.
Stud., vol. 35, no. 4, pp. 517-540, Oct. 1991, doi: 10.1016/S0020-7373(05)80090-
2.

[32] J. Siegmund et al., “Measuring neural efficiency of program comprehension,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, Paderborn Germany: ACM, Aug. 2017, pp. 140-150. doi:
10.1145/3106237.3106268.

[33] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
our Capacity for Processing Information[1]”.

[34] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models and
software maintenance,” J. Syst. Softw., vol. 7, no. 4, pp. 341-355, Dec. 1987, doi:
10.1016/0164-1212(87)90033-1.

[35] J.Koenemann and S. P. Robertson, “Expert problem-solving strategies for
program comprehension,” Proceedings of the SIGCHI conference on Human
factors in computing systems Reaching through technology - CHI '91, 1991.

[36] A. Dunsmore and M. Roper, “A Comparative Evaluation of Program
Comprehension Measures”.

[37] S. Tenny, J. M. Brannan, and G. D. Brannan, “Qualitative Study,” in StatPearls,
Treasure Island (FL): StatPearls Publishing, 2025. Accessed: Apr. 21, 2025.
[Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK470395/

[38] S. Kvale, InterViews : learning the craft of qualitative research interviewing. Los
Angeles : Sage Publications, 2009. Accessed: Apr. 21, 2025. [Online]. Available:
http://archive.org/details/interviewslearniO000kval

[39] B. DiCicco-Bloom and B. F. Crabtree, “The qualitative research interview,” Med.
Educ., vol. 40, no. 4, pp. 314-321, Apr. 2006, doi: 10.1111/j.1365-
2929.2006.02418.x.

[40] “Likert 1932.pdf.” Accessed: Apr. 22, 2025. [Online]. Available:
https://legacy.voteview.com/pdf/Likert_1932.pdf

[41] J.Feigenspan, S. Apel, J. Liebig, and C. Kastner, “Exploring Software Measures
to Assess Program Comprehension,” in 2011 International Symposium on
Empirical Software Engineering and Measurement, Banff, AB, Canada: IEEE, Sep.
2011, pp. 127-136. doi: 10.1109/ESEM.2011.21.

[42] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, “Program
indentation and comprehensibility,” Commun. ACM, vol. 26, no. 11, pp. 861-867,
Nov. 1983, doi: 10.1145/182.358437.

[43] M. A. Just, “A theory of reading: From eye ixations to comprehension”.

93

[44] K. Rayner, “Eye Movements in Reading and Information Processing: 20 Years
of Research”.

[45] A. T. Duchowski, Eye Tracking Methodology. Cham: Springer International
Publishing, 2017. doi: 10.1007/978-3-319-57883-5.

[46] J. Z. Lim, J. Mountstephens, and J. Teo, “Emotion Recognition Using Eye-
Tracking: Taxonomy, Review and Current Challenges,” Sensors, vol. 20, no. 8, p.
2384, Apr. 2020, doi: 10.3390/s20082384.

[47] B. Kitchenham, “Procedures for Performing Systematic Reviews”.

[48] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and A. Brechmann,
“Simultaneous measurement of program comprehension with fMRI and eye
tracking: a case study,” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Oulu Finland:
ACM, Oct. 2018, pp. 1-10. doi: 10.1145/3239235.3240495.

[49] Y.-G. Guéhéneuc, “TAUPE: towards understanding program comprehension,”
in Proceedings of the 2006 conference of the Center for Advanced Studies on
Collaborative research - CASCON 06, Toronto, Ontario, Canada: ACM Press,
2006, p. 1. doi: 10.1145/1188966.1188968.

[50] S. Yusuf, H. Kagdi, and J. |. Maletic, “Assessing the Comprehension of UML
Class Diagrams via Eye Tracking,” in 15th IEEE International Conference on
Program Comprehension (ICPC ’07), Banff, Alberta, BC: IEEE, Jun. 2007, pp. 113—
122. doi: 10.1109/ICPC.2007.10.

[51] M. E. Crosby and J. Stelovsky, “How do we read algorithms? A case study,”
Computer, vol. 23, no. 1, pp. 25-35, Jan. 1990, doi: 10.1109/2.48797.

[52] B. Sharif and J. Maletic, An Eye Tracking Study on camelCase and under_score
Identifier Styles. 2010, p. 205. doi: 10.1109/ICPC.2010.41.

[53] K. Parketal., “An eye tracking study assessing source code readability rules for
program comprehension,” Empir. Softw. Eng., vol. 29, no. 6, p. 160, Oct. 2024, doi:
10.1007/s10664-024-10532-x.

[54] J. Beatty and B. Lucero-Wagoner, “The pupillary system,” Oct. 2012.

[55] JACKSON BEATTY and DANIEL KAHNEMAN, “Pupillary changes In two
memory tasks,” Springer, pp. 371--372, 1966. [Online]. Available:
https://link.springer.com/content/pdf/10.3758/BF 03328444 .pdf

[56] E.H.HessandJ. M. Polt, “Pupil Size in Relation to Mental Activity during Simple
Problem-Solving,” Science, vol. 143, no. 3611, pp. 1190-1192, Mar. 1964, doi:
10.1126/science.143.3611.1190.

[57] M. Behroozi, S. Shirolkar, T. Barik, and C. Parnin, “Does stress impact technical
interview performance?,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event USA: ACM, Nov. 2020, pp. 481-492. doi:
10.1145/3368089.3409712.

[58] M. Doughty, “Consideration of Three Types of Spontaneous Eyeblink Activity in
Normal Humans: during Reading and Video Display Terminal Use, in Primary
Gaze, and while in Conversation,” Optom. Vis. Sci. Off. Publ. Am. Acad. Optom.,
vol. 78, pp. 712-25, Nov. 2001, doi: 10.1097/00006324-200110000-00011.

[59] “The biomedical engineering handbook. 1,” Boca Raton, Fla: CRC Press, 2000.

[60] D.L.Schomer and F. Lopes da Silva, Niedermeyer’s electroencephalography:
Basic principles, clinical applications, and related fields: Sixth edition. 2012, p.
12609.

[61] M. Teplan, “FUNDAMENTALS OF EEG MEASUREMENT,” Meas. Sci. Rev.,
vol. 2, 2002.

94

[62] “Hochdichte EEG-Hauben flr Forscher,” BESDATA. Accessed: Apr. 22, 2025.
[Online]. Available: https://besdatatech.com/de/high-density-eeg-caps-for-
researchers/

[63] G. Buzsaki, Rhythms of the Brain. Oxford University Press, 2006. doi:
10.1093/acprof:0s0/9780195301069.001.0001.

[64] R.Llinasand U. Ribary, “Coherent 40-Hz Oscillation Characterizes Dream State
in Humans,” Proc. Natl. Acad. Sci. U. S. A., vol. 90, pp. 2078-81, Apr. 1993, doi:
10.1073/pnas.90.5.2078.

[65] “Dry Electrode,” Wearable Sensing | Dry EEG. Accessed: Apr. 22, 2025.
[Online]. Available: https://wearablesensing.com/dry-electrode/

[66] S. J. Luck, An Introduction to the Event-Related Potential Technique, second
edition. MIT Press, 2014.

[67] E. Lattari et al., “Corticomuscular coherence behavior in fine motor control of
force: A critical review,” Rev. Neurol., vol. 51, pp. 610-23, Nov. 2010.

[68] S. Kanoga and Y. Mitsukura, “Review of Artifact Rejection Methods for
Electroencephalographic Systems,” 2017. doi: 10.5772/68023.

[69] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis,” Brain Res. Rev., vol. 29, no. 2-3, pp. 169—
195, Apr. 1999, doi: 10.1016/S0165-0173(98)00056-3.

[70] E. Soloway and J. C. Spohrer, Studying the novice programmer. Psychology
Press, 2013. Accessed: Apr. 21, 2025. [Online]. Available:
https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&i
dentifierValue=10.4324/9781315808321&type=googlepdf

[71] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching
Programming: A Review and Discussion,” Comput. Sci. Educ., vol. 13, no. 2, pp.
137-172, Jun. 2003, doi: 10.1076/csed.13.2.137.14200.

[72] L. E. Winslow, “Programming pedagogy—a psychological overview,” ACM
SIGCSE Bull., vol. 28, no. 3, pp. 17-22, Sep. 1996, doi: 10.1145/234867.234872.

[73] B. A. Sheil, “The Psychological Study of Programming,” ACM Comput. Surv.,
vol. 13, no. 1, pp. 101-120, Mar. 1981, doi: 10.1145/356835.356840.

[74] A. Lishinski, A. Yadav, R. Enbody, and J. Good, “The Influence of Problem
Solving Abilities on Students’ Performance on Different Assessment Tasks in CS1,”
in Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, Memphis Tennessee USA: ACM, Feb. 2016, pp. 329-334. doi:
10.1145/2839509.2844596.

[75] B. Mase and L. Nel, “Common Code Writing Errors Made by Novice
Programmers: Implications for the Teaching of Introductory Programming,” 2022,
pp. 102-117. doi: 10.1007/978-3-030-95003-3_7.

[76] R. Lister, “On the cognitive development of the novice programmer: and the
development of a computing education researcher,” in Proceedings of the 9th
Computer Science Education Research Conference, Virtual Event Netherlands:
ACM, Oct. 2020, pp. 1-15. doi: 10.1145/3442481.3442498.

[77] J. Sillito, G. Murphy, and K. Volder, “Asking and Answering Questions during a
Programming Change Task,” Softw. Eng. IEEE Trans. On, vol. 34, pp. 434-451,
Aug. 2008, doi: 10.1109/TSE.2008.26.

[78] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “The Role of
Experience and Ability in Comprehension Tasks Supported by UML Stereotypes,”
in 29th International Conference on Software Engineering (ICSE’07), Minneapolis,
MN: IEEE, May 2007, pp. 375-384. doi: 10.1109/ICSE.2007.86.

95

[79] M. M. Mliller, “Are Reviews an Alternative to Pair Programming?,” Empir. Softw.
Eng., vol. 9, no. 4, pp. 335-351, Dec. 2004, doi:
10.1023/B:EMSE.0000039883.47173.39.

[80] S. Kleinschmager and S. Hanenberg, “How to rate programming skills in
programming experiments?: a preliminary, exploratory, study based on university
marks, pretests, and self-estimation”.

[81] C. Bunse, “Using patterns for the refinement and translationof UML models: A
controlled experiment,” Empir. Softw. Eng., vol. 11, no. 2, pp. 227-267, Jun. 2006,
doi: 10.1007/s10664-006-6403-7.

[82] S. Biffland W. Grossmann, Evaluating the accuracy of defect estimation models
based on inspection data from two inspection cycles. 2001, p. 154. doi:
10.1109/ICSE.2001.919089.

[83] J.E.Hannay, E. Arisholm, H. Engvik, and D. I. K. Sjoberg, “Effects of Personality
on Pair Programming,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 61-80, Jan.
2010, doi: 10.1109/TSE.2009.41.

[84] N. Ensmenger, “The Multiple Meanings of a Flowchart”.

[85] M. d/o Muniandi, N. A. binti M. Saad, and J. d/o M. @ Manickam, “Students’
Perception on RAPTOR Application Implementation in Problem Solving and
Program Design,” Stud. Percept. RAPTOR Appl. Implement. Probl. Solving
Program Des., vol. 134, no. 1, Art. no. 1, Oct. 2023, Accessed: Apr. 21, 2025.
[Online]. Available: https://ijrp.org/paper-detail/5520

[86] B. Calloni and D. Bagert, ICONIC programming in BACCII vs. textual
programming: which is a better learning environment?, vol. 26. 1994, p. 192. doi:
10.1145/191033.191103.

[87] B. A. Calloni, D. J. Bagert, and H. P. Haiduk, “lconic programming proves
effective for teaching the first year programming sequence,” ACM SIGCSE Buill.,
vol. 29, no. 1, pp. 262-266, Mar. 1997, doi: 10.1145/268085.268189.

[88] T.Crewsand U. Ziegler, “The flowchart interpreter for introductory programming
courses,” in FIE ’98. 28th Annual Frontiers in Education Conference. Moving from
“Teacher-Centered” to “Learner-Centered” Education. Conference Proceedings
(Cat. No.98CH36214), Tempe, AZ, USA: IEEE, 1998, pp. 307-312. doi:
10.1109/FIE.1998.736854.

[89] T.Crews, “Using a Flowchart Simulator in a Introductory Programming Course”.

[90] T.Watts, “The SFC editor a graphical tool for algorithm development,” J Comput
Sci Coll, vol. 20, no. 2, pp. 73-85, Dec. 2004.

[91] M. C. Carlisle, “RAPTOR: A VISUAL PROGRAMMING ENVIRONMENT FOR
TEACHING OBJECT-ORIENTED PROGRAMMING”.

[92] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “Raptor:
introducing programming to non-majors with flowcharts,” J. Comput. Sci. Coll., vol.
19, no. 4, pp. 52-60, 2004, Accessed: Apr. 21, 2025. [Online]. Available:
https://raptor.martincarlisle.com/raptor_paper.doc

[93] A. Scott, Using Flowcharts, Code and Animation for Improved Comprehension
and Ability in Novice Programming, Ph.D. dissertation, Univ. of South Wales, 2010.
[Online].Available:
https.//pure.southwales.ac.uk/files/991736/Dr_Andrew_Scott PhD Thesis.pdf

[94] “RAPTOR - Flowchart Interpreter.” Accessed: Apr. 22, 2025. [Online]. Available:
https://raptor.martincarlisle.com/

[95] G. Atanasova and P. Hristova, “Flow chart interpreter. an environment for
software animation representation,” in Proceedings of the 4th international
conference conference on Computer systems and technologies e-Learning -

96

CompSysTech '03, Rousse, Bulgaria: ACM Press, 2003, pp. 453—-458. doi:
10.1145/973620.973696.

[96] D. Hooshyar, R. Ahmad, M. Md Nasir, S. Band, and S.-J. Horng, “Flowchart-
Based Programming Environments for Improving Comprehension and Problem-
Solving Skill of Novice Programmers: A Survey,” Int. J. Adv. Intell. Paradig., vol. 7,
Nov. 2014, doi: 10.1504/1JAIP.2015.070343.

[97] M. Andrzejewska and A. Stolinska, “Do Structured Flowcharts Outperform
Pseudocode? Evidence From Eye Movements,” IEEE Access, vol. 10, pp. 132965—-
132975, Dec. 2022, doi: 10.1109/ACCESS.2022.3230981.

[98] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A Realistic Empirical Evaluation of
the Costs and Benefits of UML in Software Maintenance,” IEEE Trans. Softw. Eng.,
vol. 34, no. 3, pp. 407—-432, May 2008, doi: 10.1109/TSE.2008.15.

[99] C. Cabo, Effectiveness of Flowcharting as a Scaffolding Tool to Learn Python.
2018, p. 7. doi: 10.1109/FIE.2018.8658891.

[100] S. Xinogalos, Using Flowchart-based Programming Environments for
Simplifying Programming and Software Engineering Processes. 2013. doi:
10.1109/EduCon.2013.6530276.

[101] R. Neild, “Common Guidelines for Education Research and Development”.

[102] R. Rosenthal, Meta-Analytic Procedures for Social Research. 2455 Teller
Road, Thousand Oaks California 91320 United States of America: SAGE
Publications, Inc., 1991. doi: 10.4135/9781412984997.

[103] D. Moreau and K. Wiebels, “Ten simple rules for designing and conducting
undergraduate replication projects,” PLOS Comput. Biol., vol. 19, no. 3, p.
e1010957, Mar. 2023, doi: 10.1371/journal.pcbi.1010957.

[104] C. F. Camerer et al., “Evaluating the replicability of social science experiments
in Nature and Science between 2010 and 2015,” Nat. Hum. Behav., vol. 2, no. 9,
pp. 637-644, Aug. 2018, doi: 10.1038/s41562-018-0399-z.

[105] Committee on Reproducibility and Replicability in Science et al., Reproducibility
and Replicability in Science. Washington, D.C.: National Academies Press, 2019,
p. 25303. doi: 10.17226/25303.

[106] O. S. Gémez, N. Juristo, and S. Vegas, Replications types in experimental
disciplines. 2010. doi: 10.1145/1852786.1852790.

[107] Open Science Collaboration, “Estimating the reproducibility of psychological
science,” Science, vol. 349, no. 6251, p. aac4716, Aug. 2015, doi:
10.1126/science.aac4716.

[108] C.Chambers, The Seven Deadly Sins of Psychology: A Manifesto for Reforming
the Culture of Scientific Practice. Princeton University Press, 2019. Accessed: Apr.
21, 2025. [Online]. Available: https://www.perlego.com/book/859652/the-seven-
deadly-sins-of-psychology-a-manifesto-for-reforming-the-culture-of-scientific-
practice-pdf

[109] B. A.Nosek and T. M. Errington, “Making sense of replications,” eLife, vol. 6, p.
23383, Jan. 2017, doi: 10.7554/eLife.23383.

[110] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern
code review,” in 2013 35th International Conference on Software Engineering
(ICSE), San Francisco, CA, USA: IEEE, May 2013, pp. 712-721. doi:
10.1109/ICSE.2013.6606617.

[111] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv., vol. 45,
no. 1, pp. 1-61, Nov. 2012, doi: 10.1145/2379776.2379787.

97

[112] C. Wohlin, P. Runeson, M. Hast, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering. Berlin, Heidelberg: Springer, 2024. doi:
10.1007/978-3-662-69306-3.

[113] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, Third edition. Cambridge, Massachusetts London, England: MIT Press,
20009.

[114] N. Peitek et al., “Correlates of programmer efficacy and their link to experience:
a combined EEG and eye-tracking study,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Singapore Singapore: ACM, Nov. 2022, pp. 120-131. doi:
10.1145/3540250.3549084.

[115] J. Siegmund and J. Schumann, “Confounding parameters on program
comprehension: a literature survey,” Empir. Softw. Eng., vol. 20, no. 4, pp. 1159—-
1192, Aug. 2015, doi: 10.1007/s10664-014-9318-8.

[116] M. Cauchoix et al., “The repeatability of cognitive performance: a meta-
analysis,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, no. 1756, p. 20170281, Aug.
2018, doi: 10.1098/rstb.2017.0281.

[117] G. Moreno, “Mook, Douglas.G. (1996). Motivation: The Organization of Action.
Nueva York: Norton.,” Rev. Psicol., vol. 20, pp. 156-159, Jun. 2002, doi:
10.18800/psico.200201.008.

[118] R. B. Cattell, Abilities: their structure, growth, and action. Boston, Mass.:
Houghton Mifflin, 1971.

[119] D. Feitelson, Considerations and Pitfalls in Controlled Experiments on Code
Comprehension. 2021, p. 117. doi: 10.1109/ICPC52881.2021.00019.

[120] M. Lichtman, Qualitative Research in Education: A User’s Guide, 4th ed. New
York: Routledge, 2023. doi: 10.4324/9781003281917.

[121] C. Sun, S. Yang, and B. Becker, “Debugging in Computational Thinking: A Meta-
analysis on the Effects of Interventions on Debugging Skills,” J. Educ. Comput.
Res., vol. 62, no. 4, pp. 867-901, Jul. 2024, doi: 10.1177/07356331241227793.

[122] M. P. O'Brien, “Software Comprehension — A Review & Research Direction”.

[123] “manual-tobii-pro-x3-120_23122019.pdf.” Accessed: Apr. 25, 2025. [Online].
Available: https://lwww.staff.universiteitleiden.nl/binaries/content/assets/sociale-
wetenschappen/faculteitsbureau/solo/research-support-
website/equipment/manual-tobii-pro-x3-120_23122019.pdf

[124] “Tobii Customer Portal.” Accessed: Apr. 22, 2025. [Online]. Available:
https://connect.tobii.com

[125] “Dry EEG Headset | Quick-20r,” CGX. Accessed: Apr. 25, 2025. [Online].
Available: https://www.cgxsystems.com/quick-20r-v2

[126] R. S. Hessels, D. C. Niehorster, C. Kemner, and I. T. C. Hooge, “Noise-robust
fixation detection in eye movement data: Identification by two-means clustering
(I2MC),” Behav. Res. Methods, vol. 49, no. 5, pp. 1802-1823, Oct. 2017, doi:
10.3758/s13428-016-0822-1.

[127] “Home — PsychoPy v2025.1.0.” Accessed: Apr. 22, 2025. [Online]. Available:
https://www.psychopy.org/

[128] “SoSci Survey » Onlinebefragung, DSGVO-konform, deutsches Unternehmen.”
Accessed: Apr. 22, 2025. [Online]. Available: https://www.soscisurvey.de/

[129] U. Herwig, P. Satrapi, and C. Schonfeldt-Lecuona, “Using the International 10-
20 EEG System for Positioning of Transcranial Magnetic Stimulation,” Brain
Topogr., vol. 16, pp. 95-9, Feb. 2003, doi:
10.1023/B:BRAT.0000006333.93597.9d.

98

[130] B. Coffman et al., Using independent components analysis (ICA) to remove
artifacts associated with transcranial direct current stimulation (tDCS) from
electroencephalography (EEG) data: A comparison of ICA algorithms, vol. 7. 2013.
doi: 10.1016/j.brs.2014.01.025.

[131] M. Ullsperger and S. Debener, “Simultaneous EEG and fMRI: Recording,
Analysis, and Application,” Apr. 2010, doi:
10.1093/acprof:0s0/9780195372731.001.0001.

[132] A. Widmann, E. Schroger, and B. Maess, “Digital filter design for
electrophysiological data — a practical approach,” J. Neurosci. Methods, vol. 250,
pp. 34-46, Jul. 2015, doi: 10.1016/j.jneumeth.2014.08.002.

[133] “Why Many Psychology Studies Fail to Replicate,” Verywell Mind. Accessed:
Apr. 27, 2025. [Online]. Available: https://www.verywellmind.com/what-is-
replication-2795802

[134] “Threats of a Replication Crisis in Empirical Computer Science -
Communications of the ACM.” Accessed: Apr. 28, 2025. [Online]. Available:
https://cacm.acm.org/research/threats-of-a-replication-crisis-in-empirical-
computer-science/

99

