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Abstract
Program comprehension is a fundamental skill in computer science education, yet

novice programmers often find it difficult to develop accurate mental models that link

problem specifications to effective program solutions. Visual aids such as flowcharts

have long been suggested as a way of supporting algorithmic thinking and improving

comprehension. This study presents a controlled replication of an earlier experiment

that investigated the effects of flowcharts on code comprehension of novice

programmers. The primary goal was to validate the original findings under similar

conditions while exploring potential differences arising from new participants and

contextual factors. A within-subjects experimental design was employed, in which

participants solved programming comprehension tasks using code snippets alone and

with code snippets accompanied by flowcharts. Eye-tracking technology, EEG devices,

and well-designed interviews were used to provide a multi-modal analysis of visual

attention, cognitive load, response time, comprehension correctness, and subjective

preference. The results showed that participants actively used flowcharts while

completing the tasks and consistently said that they would prefer them to be included

in introductory programming courses. This aligns with the original study's subjective

findings. However, no statistically significant improvements in comprehension or

response time were observed between the two conditions. This contradicts the original

study's findings of improvements in both areas when flowcharts were present.

Cognitive load measures also showed no significant differences, which reinforces

previous findings. The persistent preference for flowcharts suggests that, while they

may not directly enhance performance metrics, they could provide novice

programmers with perceived cognitive support or psychological reassurance. The

challenges encountered during this replication include a different pool of participants,

a small sample size, minor technical updates, and limited access to the original

researcher. These issues are consistent with the replication crisis observed in the

behavioral sciences, emphasizing the need for careful documentation, broader

replication initiatives, and standardized protocols within empirical software research.

In conclusion, although flowcharts cannot guarantee measurable improvements in

novice code comprehension on their own, integrating them into programming

education can enhance the learning experience. Therefore, they should be considered
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a useful pedagogical supplement. Future research should involve larger and more

diverse samples of participants, explore alternative visual aids and adopt longitudinal

designs to evaluate the long-term impact of algorithmic visualizations on learning

outcomes.

Keywords: Replication Study, Program Comprehension, Novice Programmers,

Flowcharts, Cognitive Load.
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1 Introduction

Since the inception of computing, software systems have progressively advanced from

basic sequential programs to sophisticated, large-scale distributed applications

capable of real-time operations. As software engineering established itself as a distinct

academic discipline during the late 1960s [1], one of its fundamental challenges has

consistently been the comprehension of source code, particularly code written by

others. Mastery of program comprehension is integral to numerous aspects of software

development, such as software maintenance, debugging, and effective team

collaboration. Consequently, enhancing the understanding of program comprehension

remains a critical objective of ongoing academic research and instructional

methodologies. Over the past few decades, researchers have explored how software

developers read, interpret, and mentally represent source code. This line of research

has contributed to the development of influential theories, including top-down and

bottom-up comprehension models [2], [3], mental model frameworks [4], and the use

of visual aids to support cognitive processing during code analysis [5], [6].

Despite continuous advances in programming environments and analysis tools,

empirical studies consistently report that developers still spend a significant amount of

time trying to understand existing code [7], [8]. As a result, improving code

understandability has become a central goal in software engineering. In parallel, the

global demand for computer science education has increased significantly [9],

positioning program comprehension as a critical learning objective in introductory

programming courses. However, many novice students continue to face challenges in

constructing accurate mental models of code, limiting their ability to solve problems

effectively and produce correct programs. These difficulties highlight the need for

teaching strategies that bridge the gap between syntax and conceptual understanding.

Even experts often report difficulties in teaching programming, which requires carefully

designed curricula that go beyond traditional methods [10].

Many educational approaches have been explored to improve the learning experience

in introductory programming courses. However, individual empirical studies may not

provide generalizable findings. As a result, replication studies are increasingly being

used to validate and verify the effectiveness of educational tools and teaching
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strategies for novice programmers. In line with this, Bennedsen and Caspersen

highlighted the need for reliable, data-driven evidence to guide decisions in computing

education. In their study, they examined the success and failure rates of students in

first-year programming or computer science courses at the university level. Their

results did not indicate a major issue or an alarmingly high failure rate among students

in these courses. However, the small number of participants limited how broadly their

results could be applied [11].

1.1 Problem Statement

Despite the increasing global emphasis on computer science education, a significant

number of students continue to struggle with introductory programming courses.

Studies have shown that approximately 30% of students enrolled in computer science

programs drop out within the first year, and less than half complete their degree

requirements [12].

These alarming statistics are closely related to the challenges faced in introductory

programming courses, where students must simultaneously develop multiple skills

such as syntax mastery, problem solving, and algorithmic thinking. Moreover, learning

to program is widely recognized as a cognitively demanding process. Novice learners

often struggle to grasp the structural and semantic aspects of programming languages

and find it even more challenging to design functional solutions to given tasks [13].

Furthermore, teachers may also misjudge students' conceptual difficulties, limiting their

ability to provide appropriate support when needed [13].

In addition, many students fail to build accurate mental models of program behavior,

which are essential for meaningful understanding and long-term retention [14].

Research suggests that without such models, students are likely to rely on superficial

patterns or misconceptions, leading to poor academic performance and increased

frustration [15], [16].

The combined effect of high cognitive load, trustable tools and abstract theoretical

content can severely hinder students' learning progress [17]. These barriers highlight

the need for efficient tools and teaching strategies that go beyond traditional lecture-

based formats.
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Previous studies have produced mixed results, often limited by small sample sizes and

narrow context [18], [19]. To address this gap, there is a growing interest in conducting

replication studies that re-examine previous findings with larger and different groups of

participants.

1.2 Objective

Program visualization is regarded by numerous authors as a way for developing

accurate mental models. Tudoreanu et al. stated that visualization is one of the most

common approaches used by students to enhance learning by creating a mental image

of how things work [20]. Interactive visualization technologies, as an active learning

method, increase the engagement between the learner and the subject matter [21].

Zimmermann et al. conducted a study over three years with pharmacy students,

employed both quantitative and qualitative methods to assess the effectiveness of

flowcharts in enhancing student learning. The study concluded that flowcharts offer a

valuable alternative approach to teaching complex content. They enable students to

organize and summarize information, thereby promoting meaningful learning [22].

Levy et al. observed that visualization offers a concrete model of execution essential

for all students to comprehend algorithms and programming [23].

Flowcharts are a type of diagram that visually represents the logical flow of a process

or algorithm using standardized symbols and arrows to indicate the sequence of

operations. Programmers commonly use it to illustrate control structures, e.g., loops,

decisions, and sequences, thereby simplifying and communicating complex logic.

However, Shneiderman and Mayer noted that flowcharts may be an aid tool in some

situations and a hindrance in others [3].

The original study conducted at the technical university Chemnitz in 2022 aimed to

explore how novice programmers use flowcharts as a support tool for understanding

programs. The effects of flowcharts were assessed in terms of visual attention,

cognitive load, response time, comprehension accuracy, and interview responses. In

the context of programming instruction, flowcharts have been proposed as effective

visual tools to support novice learners in understanding program logic [24]. By

replicating the original study under comparable conditions, this study aims to evaluate

the robustness and generalizability of its findings. This will help to validate earlier
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conclusions and extend our understanding of how visual aids, specifically flowcharts,

can support novice programmers in comprehension tasks. While this study follows a

direct replication model, minor adjustments have been made to address logistical

constraints and improve procedural clarity. These modifications are detailed in the

methodology and experimental design sections. The main objective of this study is to

replicate the verify the findings of the original study and assess the effectiveness of

flowcharts as a cognitive aid in code comprehension among novice programmers. This

research aims to:

• Examine whether the use of flowcharts improves code comprehension accuracy

in novice programmers.

• Investigate the impact of flowcharts on response time during code-related tasks.

• Assess the effect of flowcharts on perceived cognitive load.

• Explore how and to what extent novice programmers actively use flowcharts

during comprehension.

• Either verify the findings of the original study or identify new challenges under

similar experimental conditions.

RQ: Can the impact of flowcharts on novice programmers’ code comprehension be

verified in a replication study conducted under similar experimental conditions?

1.3 Thesis Structure

This thesis is structured in a way that mirrors the research process, with a logical

progression of chapters. Each chapter builds on the previous one to create a coherent

and comprehensive study. The present study is structured as follows:

Chapter 2 (Literature Review): This chapter establishes the theoretical background

necessary to understand the research problem. It discusses core concepts such as

program comprehension theories, cognitive strategies of novice programmers, and

various approaches to measuring comprehension. In addition, the use of algorithm

visualizations, particularly flowcharts, and their role in computing education are

examined. The chapter concludes with a review of related work and previous

replication efforts in software engineering.
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Chapter 3 (Methodology): The methodology chapter details the experimental design

used in this replication study. It outlines the variables, hypotheses, materials, and tools

employed, including eye-tracking and EEG devices. It also describes the participant

selection, task structure, and operational definitions to ensure clarity and replicability.

Chapter 4 (Conduct): This chapter describes the practical implementation of the

experiment. It explains the step-by-step procedure used to conduct the study, including

participant recruitment, task administration, and data collection methods.

Chapter 5 (Data Analysis and Results): After data collection, this chapter presents

how the data were prepared, cleaned, and analyzed. It includes both descriptive and

inferential statistics, focusing on fixation time, cognitive load, response time,

correctness, and subjective preferences. A direct comparison to the results of the

original study is also provided.

Chapter 6 (Discussion): The discussion chapter interprets the results considering the

research question and objectives. It evaluates the significance of the findings, identifies

consistencies and deviations from the original study, and addresses the implications.

This chapter also outlines threats to validity that may have influenced the results.

Chapter 7 (Conclusion and Future Work): The final chapter summarizes the main

contributions of the study and revisits its objectives and research questions. It reflects

on the limitations and challenges of conducting replication research, especially in

educational and empirical software engineering contexts. Directions for future research

are proposed, including methodological improvements and broader replication

strategies.

1.4 Overview of the Original Study

The original study, entitled "The Effect of Flowcharts on Novice Programmers' Code

Comprehension", was a master's thesis conducted at Chemnitz University of

Technology in 2022. The primary objective of the study was to investigate the role of

flowcharts as a visual aid in improving novice programmers' code comprehension. The

research looked at key factors such as visual attention, cognitive load, reaction time,

correctness and subjective preference. The following data were extracted directly from

the original study in order to provide a clear overview and to enable comparison with

the findings of this replication study [24].
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The experiment used a within-subjects design involving 11 participants. Each

participant completed a total of 14 tasks: 7 using code snippets alone and 7 code

snippets accompanied by flowcharts. All tasks were written in Java. The participants

had 3 to 5 years of academic programming experience, with only two participants

having up to 1.5 years of professional programming experience. Most participants had

little or no experience with flowcharts. The demographics of the participants from the

original study are summarized in Figure 1.1.

Figure 1.1 Demographic overview of the original study [24].

The order of the tasks was randomized to minimize learning effects. During the

experiment, participants’ visual behavior was tracked using an eye-tracking device,

and cognitive load was measured using an EEG headset. Prior to the tasks,

participants completed a prequestionnaire assessing their experience with

programming and flowcharts. After completing the experiment, a post-questionnaire

and an interview were conducted to gain insight into their strategies and preferences.

The study was announced in computer science classrooms and social media groups.

Students who wished to participate booked an appointment online, then received an

automated email with a brief description of the experiment and relevant information.

Participants completed a pre-questionnaire to collect demographic information. Figure

1.2 shows the prequestionnaire given in the original study.

Participants received general instructions and a brief explanation of the flowcharts.

They then completed two mock tasks: one containing a source code only and another

one containing both a source code with a flowchart. After that participant began the
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experiment, which included problem-solving tasks in the Java programming language.

They were asked to determine the output of the provided snippet, in the next slide four

answers were given with a skip option. Each task was followed by a 10-second cross-

fixation rest period.

Figure 1.2 Pre-questionnaire used in the original study [24].

The experiment lasted 30 minutes. The experiment ended either upon completion of

the 14 tasks or after 30 minutes. At this point, participants were asked to take part in a

post-questionnaire interview to gain a better insight into their overall experience and to

identify their preferences regarding the use of flowcharts as reported in the study. The

post-questionnaire questions are shown in Figure 1.3.

Figure 1.3 Post-questionnaire used in the original study [24].
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1.4.1 Results of the Original Study

The results showed that participants made frequent use of flowcharts and showed

improved correctness on tasks where flowcharts were present. Eye-tracking data

confirmed that participants actively directed their gaze to the flowcharts throughout the

tasks, indicating that these visual aids were indeed used in the comprehension

process. However, response times were longer and no significant differences in

cognitive load were found. Subjective feedback indicated that most participants

preferred the presence of flowcharts, suggesting that they were useful in aiding

comprehension.

Despite the promising results, the original study had several limitations that may have

affected the internal and external validity of the findings. The small sample size limited

statistical power and generalizability. In addition, individual differences in familiarity

with flowcharts and Java syntax may have introduced variability into the results. The

use of physiological measures, while informative, also presented technical challenges

that could affect the accuracy of the data. These threats to validity highlight the need

for replication under more diverse conditions.

These findings highlight the potential of flowcharts to enhance mental model formation

in novice programmers. However, given the limited sample size and scope, the original

author emphasized the need for replication studies to verify the generalizability of these

findings [24].
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2 Literature Review

The purpose of this literature review is to provide a conceptual and empirical basis for

the current study by examining relevant research on program comprehension,

strategies, approaches to visual aids used in training (e.g. flowcharts) and the cognitive

challenges faced by novice programmers. In addition, the technical characteristics of

eye tracking and EEG equipment are discussed.

2.1 Program Comprehension

Understanding source code is a core cognitive activity in software development and

maintenance. Since the 1980s, researchers have studied how programmers read,

interpret, and mentally represent code, with the aim of uncovering the cognitive

strategies that developers use when interacting with software systems [2],[25].

Program comprehension refers to how developers make sense of existing code,

including the structure of components, their relationships, functionality, and dynamic

behavior [26].

It involves forming a mental model of the system's purpose and structure, which is

essential for tasks such as debugging, maintenance and evolution. Several studies

have shown that developers spend a significant amount of time trying to comprehend

code. It has been estimated that up to 58% of developers' time is spent understanding

code, highlighting its critical role in effective software development [27].

According to Siegmund, this proportion has remained largely unchanged for decades

despite advances in development tools, largely due to the increasing complexity of

modern software systems. Siegmund also notes that the stagnation of comprehension

research since the mid-1990s has led to a lack of rigorous evaluation of tools and

techniques, which may contribute to the proliferation of poorly validated features that

offer limited practical support to developers [8]. In addition, program understanding is

particularly challenging in collaborative environments, where comprehending code

written by others is often required. Developers must efficiently construct mental

models; cognitive representations built from experience and pattern recognition to

navigate unfamiliar code and solve complex problems [28]. While program

comprehension remains a critical cognitive process in software engineering, current
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challenges including increasing system complexity and insufficient tool evaluation

highlight the continued need for empirical research and replication studies to support

developer, novices, educator performance and comprehension efficiency.

2.1.1 Program Comprehension Strategies

The Mental Model Framework provides a basis for understanding how developers

cognitively process source code during program comprehension. Building on this

understanding, the top-down, bottom-up and integrated models offer complementary

strategic perspectives for approaching comprehension tasks. Together, these

strategies, when integrated with the mental model framework, provide a

comprehensive view of how developers approach the challenges of program

comprehension, offering insights into both their cognitive processes and practical

strategies.

2.1.2 Top-Down Comprehension

The top-down comprehension model is a hypothesis-driven strategy in which

developers use their domain knowledge and experience to form high-level

assumptions about the purpose of a program. This approach was extensively studied

by Brooks and later extended upon by Soloway and Ehrlich [2], [25].

Brooks proposed in theory that program comprehension begins with a high-level

hypothesis, which is then refined through sub-hypotheses in a hierarchical manner

moving from general abstractions toward concrete code elements. This iterative

refinement helps the programmer systematically narrow down their understanding,

ultimately forming a mental model of the program’s behavior. A key concept in Brooks'

top-down model is the use of beacons, distinctive patterns or cues in the code that

signal specific structures or operations. These beacons help the developer to navigate

and interpret the code efficiently [2].

Similarly, Soloway and Ehrlich introduced the notion of programming plans,

stereotypical fragments of code that represent common routines or goals. These plans,

often used by experts, allow them to associate segments of code with higher-level

intentions [29]. Their work suggests that top-down understanding is primarily

accessible to expert programmers, who can form accurate hypotheses based on their

familiarity with code structures and domain-specific knowledge. This strategy tends to
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be less cognitively demanding than the bottom-up approach, as it allows programmers

to interpret individual code statements in the context of a broader conceptual

framework.

As a result, experienced developers typically prefer top-down comprehension when

solving tasks [30]. Although beacons are generally considered to be helpful,

Wiedenbeck's research revealed a potential downside: if beacons are inaccurate or

misleading, they can lead readers to draw incorrect conclusions, significantly impeding

comprehension [31]. This dual role highlights the importance of designing code with

clear, consistent cues to aid comprehension.

2.1.3 Bottom-Up Comprehension

The bottom-up comprehension model describes how a programmer builds

understanding by starting at the lowest levels of abstraction such as individual code

statements or basic control structures and gradually combining them into higher-level

concepts. This approach is particularly useful for novice or inexperienced developers,

who may lack the experience to generate top-down hypotheses effectively. Without a

pre-existing mental model, these programmers must examine the code directly to infer

its function and build understanding incrementally [32].

A fundamental cognitive mechanism underlying this strategy is chunking, a concept

introduced by Miller in 1956. Chunking refers to the grouping of small pieces of

information into meaningful units to improve memory and comprehension. Miller

showed that working memory has a limited capacity, about seven items, plus or minus

two, emphasizing the importance of organizing information efficiently [33].

This principle provided the basis for early cognitive models of programming behavior.

Schneiderman and Mayer extended Miller's work to software comprehension,

illustrating how programmers’ abstract fragments of code into semantic chunks that

are temporarily stored in working memory. These chunks, which may represent

syntactic patterns or conceptual operations, are then processed using prior knowledge

stored in long-term memory. This process allows developers to associate isolated

pieces of code with more abstract goals or structures, enabling higher-level

comprehension [3].
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Building on this framework, Pennington emphasized that bottom-up comprehension

begins with the identification of basic control constructs, such as sequences, loops,

and conditionals, which serve as the fundamental units for chunking. These control

structures are analyzed for procedural meaning and then reorganized to reflect the

broader functional intent of the program. This process supports the construction of a

structured mental model and enhances the developer's ability to reason about program

behavior [4].

2.1.4 Hybrid Program-Comprehension Strategies

Hybrid strategies refer to flexible cognitive models that allow programmers to integrate

both top-down and bottom-up approaches to program understanding. Developers

dynamically switch between strategies depending on the nature of the task and their

level of familiarity with the code. Research suggests that hybrid strategies can improve

efficiency by allowing developers to focus only on the relevant parts of the code,

reducing the time required to build a coherent mental model. In contrast, relying on a

single strategy, especially a bottom-up one, can lead to more comprehensive

knowledge, but also increased cognitive load and processing time [34].

Siegmund discusses how experienced programmers often start with a top-down

strategy, using their domain knowledge to form high-level hypotheses about the

functionality of the program. When these initial hypotheses fail to adequately explain

specific code fragments, developers switch to a bottom-up analysis to refine or revise

their mental model. This strategy allows them to resolve ambiguities and update their

understanding efficiently. Top-down comprehension remains the preferred approach

due to its lower cognitive demands, while bottom-up is typically used as a fallback

when encountering unfamiliar structures [8].

Similarly, Koenemann and Robertson conceptualize program comprehension as a

goal-directed, hypothesis-driven process. They argue that readers selectively focus on

code segments that are most relevant to their current goals. Initially, comprehension

tends to follow a top-down path, but if hypotheses cannot be validated or

inconsistencies arise, the reader switches to a bottom-up process to explore the

program structure in more detail [35].
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2.2 Approaches to measure Program Comprehension

Various methods have been used in empirical software engineering to assess program

comprehension. The following sections summarize the main techniques used in this

study.

2.2.1 Task Performance

Task performance is one of the most widely used indirect methods of assessing code

understanding. This approach assesses a participant's ability to complete

programming-related tasks, often measuring two key metrics: correctness and

response time. Correctness refers to the accuracy of participants' responses, and for

some researchers, it is an indicator of their level of understanding. Response time

provides insight into the efficiency of cognitive processing and familiarity with the code

or domain.

Task performance can be implemented in both face to face and online experimental

settings. It allows for both individual and group-based analyses, making it versatile for

assessing comprehension in diverse populations. Typically, participants with strong

knowledge of domain perform more accurately and efficiently, whereas novices often

take longer and make more errors. These performance-based metrics provide

valuable, objective insights into the effectiveness of comprehension strategies [36].

2.2.2 Interviews

Interviews are a qualitative data collection technique that involve structured or semi-

structured dialogues between the researcher and the participant. Unlike quantitative

methods, which focus on 'how much' or 'how many', interviews explore 'how' and 'why'

participants behave or think in certain ways. This makes them particularly useful for

gaining deeper insights into cognitive processes and learning experiences [37].

According to Kvale and Brinkmann, an interview is "a conversation that has a structure

and a purpose; it goes beyond the spontaneous exchange of views because it is based

on the researcher's agenda and focuses on eliciting specific types of information" [38].

Interview structures range from strictly pre-defined to completely open-ended,

depending on the aims of the study. In program comprehension studies, interviews are

often used to supplement quantitative data. For example, Xia et al. conducted a large-

scale field study with professional programmers, combining observational data with

follow-up interviews. Their results showed that comprehension tasks consumed a
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significant amount of work time, especially for less experienced developers,

highlighting the value of qualitative insights in understanding how developers’

approach and experience comprehension challenges [26]. While interviews can

provide rich, detailed data, they also present challenges. The risk of interviewer bias,

both at the questioning and interpretation stages, can affect validity. Careful design

and reflexivity are therefore essential to ensure reliable findings [39].

2.2.3 Subjective Ranking

Subjective rating methods aim to capture participants' perceptions and self-assessed

levels of understanding. The most used tools include the Likert scale and the semantic

differential scale. These tools convert qualitative judgements into quantifiable data that

can be analyzed statistically. The Likert scale measures agreement or disagreement

with a series of statements [40]. While these scales are valuable for capturing

perceptions, they are inherently limited by the specificity and clarity of the questions

asked. Subjective rating techniques have been widely used in studies of program

comprehension. For example, Apel et al. used Likert-type items to assess participants'

familiarity with different programming paradigms [41]. Similarly, Miara et al. used

subjective ratings to determine the most comprehensible indentation styles in source

code, revealing preferences for two- or four-space indentation levels [42].

2.3 New approaches to measure Program Comprehension

Various approaches and technologies have been used to gain further insight into the

process of program comprehension. These strategies are discussed in the following

sections.

2.3.1 Eye Tracking

Eye tracking has become a widely used tool for investigating cognitive processes,

particularly in domains where visual attention plays a central role. The eye-mind

assumption, proposed by Just and Carpenter, suggests that individuals focus their

attention exclusively on the part of the stimulus currently under observation, and that

eye movements closely reflect ongoing cognitive processes [43]. This assumption,

together with the immediacy assumption, forms the theoretical basis for interpreting

eye-tracking data and provides insight into the specific areas of focus, cognitive effort

and time required for comprehension.



24

Rayner highlighted that recent advances in eye-tracking technology have made it

possible to collect gaze data with high temporal and spatial resolution [44]. Over the

past few decades, eye-tracking has become increasingly popular in software

engineering research, providing a powerful means of observing how developers

comprehend code. Eye trackers record gaze data, capturing the user's overt visual

attention [45]. Lim et al. categorize eye trackers into three main types: mobile eye

trackers, virtual reality head-mounted trackers, and desktop-based systems [46].

Eye-tracking data typically consists of horizontal and vertical coordinates that indicate

eye positions on a visual stimulus. A calibration process maps sensor input to display

coordinates, while event detection algorithms distinguish between different types of

eye movements, primarily fixations and saccades [47]. Fixations, where gaze remains

stable over a region, are associated with cognitive processing and interpretation. Their

duration varies with task complexity, stimulus design and individual factors. Saccades,

on the other hand, are rapid eye movements that shift gaze and provide minimal visual

input. Data analysis often focuses on Areas of Interest (AOIs), which are predefined

based on research objectives [48].

Given the volume of data generated, visualization techniques are critical in eye-

tracking analysis. Tools such as heat maps reveal spatial , gaze plots (scan paths) and

temporal focus. Gaze plots show the sequence and duration of fixations, while heat

maps use color gradients to illustrate the intensity of attention as shown in Figure 2.1.

Figure 2.1 Heatmap visualization over a code snippet with Flowchart.
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Peitek et al. showed that eye tracking can be combined with more advanced methods,

such as fMRI, to gain deeper insights into program comprehension [48].

The effect of visual layout and color in UML diagrams has also been studied, with

results showing that expert developers use these elements more effectively than

novices [49], [50]. Crosby and Stelovsky observed significant differences in gaze

behavior between novice and expert programmers [51].

Sharif and Maletic conducted an eye-tracking study to investigate the influence of

different naming styles. They found that underscore-style labels were read faster than

camel-case labels [52]. Similarly, Park et al. investigated the effect of source code

readability rules such as minimizing nesting on comprehension. Using eye tracking,

they showed that following these rules increased confidence and reduced reading time

[53]. In addition to gaze position, eye-tracking systems can capture other cognitive

indicators. For example, pupil dilation is a widely accepted measure of cognitive load

[54]. Beatty and Kahneman found that pupil size increased with the difficulty of memory

tasks [55], while Hess and Polt linked dilation to the complexity of mathematical

problem solving [56]. Behroozi et al. used this metric to assess stress and strain during

programming tasks [57]. However, as noted by Doughty, these measures are sensitive

to various confounding factors, such as fatigue, humidity and environmental lighting

[58].

2.3.2 Electroencephalography

The electroencephalogram (EEG), first identified by Hans Berger in 1924, was a

breakthrough in neuroscience. Berger was the first to record the brain's electrical

potential between 50 and 100 μV from the human cerebral cortex. Berger published

his results in 1929, detailing rhythmic brain activity such as alpha and beta waves, and

noting how these signals varied according to an individual's state of wakefulness or

relaxation [59].

EEG is now widely used in several fields, including neurology to diagnose conditions

such as epilepsy and sleep disorders, and cognitive neuroscience to study functions

such as perception, attention and cognitive load [60].
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EEG is a non-invasive neuroimaging technique that records the brain's electrical

activity via electrodes placed on the scalp, allowing real-time monitoring of neural

oscillations [61]. An EEG cap is shown in Figure 2.2.

Figure 2.2 EEG Cap [62].

Standard electrode placement follows the International 10-20 system, which ensures

consistency and accuracy in the positioning of electrodes over specific regions of the

scalp, labelled by anatomical zones (e.g. F for frontal, C for central) and numerical

indicators for hemisphere location. EEG signals are categorized into frequency bands

according to cognitive states [63], [64]. The main bands are described below and

illustrated in Figure 2.3.

● Delta (0.5-4 Hz): Associated with deep sleep and unconsciousness.

● Theta (4-8 Hz): Associated with meditation, creativity and cognitive
engagement.

● Alpha (8-12 Hz): Reflects relaxed alertness and low cognitive load.

● Beta (12-30 Hz): Associated with concentration, problem solving and mental
activity.

● Gamma (>30 Hz): Associated with perception, awareness and information
processing.
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Figure 2.3 EEG signal bands [65].

Due to the complexity of brain signals, EEG data is amplified and analyzed using

mathematical techniques to visualize the energy distribution across frequencies,

commonly referred to as the power spectrum [66].

EEG data are typically displayed as waveforms for real-time interpretation of brain

activity. However, EEG signals are susceptible to several artefacts that can distort the

analysis as shown in Figure 2.4These include [67], [68]:

● Ocular artefacts: Caused by eye movements; appear below 5 Hz.

● Muscle artifacts: Result from facial or scalp muscle activity (50-150 Hz).

● Respiratory artifacts: Caused by impedance changes during breathing.

● Cardiac artifacts: Caused by heartbeats, typically around 1 Hz.

● Line noise artefacts: Caused by electrical noise (50-60 Hz), can be removed

by filters.
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Figure 2.4 Configuration of an observed EEG signal including biological artifacts [68].

Artefacts must be removed or reduced to ensure accurate signal interpretation. A well-

known physiological indicator extracted from the EEG is the theta/alpha power ratio,

which is strongly correlated with cognitive workload. Studies show that theta power

increases and alpha power decreases as cognitive demand increases, making the ratio

a reliable marker of mental effort [69].

2.4 Novice Programmers

The comprehension process of novice programmers has been a major focus of

research since the 1970s. Soloway and Spohrer analyzed various aspects of novice

programming in their paper “Studying the Novice Programmer”. Their work highlighted

common challenges faced by novices, including misconceptions about programming

principles, a tendency to prioritize syntax over problem-solving methods, and

difficulties in developing effective debugging skills [70]. Similarly, Sheil examined

methodological concerns in introductory programming courses, emphasizing how

psychological research on programming could improve pedagogical approaches. In

addition, Robins and Rountree, in their comprehensive review, explored the challenges

faced by novice programmers and the complexities involved in teaching programming.

They found that novices often struggle with fundamental concepts, leading to

difficulties in both program comprehension and generation [71]. Winslow provided a

psychological perspective on programming pedagogy, noting that many challenges

have inadequate mental models and use an ineffective "line-by-line" approach to

programming [72].

Sheil underscored the complexity of understanding how students learn to program and

highlighted the importance of empirical studies to evaluate cognitive processes and
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teaching methods in programming education [73]. Lishinski et al. investigated how

problem-solving ability relates to programming performance, finding that strong

problem-solving skills are a key predictor of success in programming education [74].

Mase and Nel observed that novice programmers often make unnecessary errors

when writing code, often due to a poor understanding of basic programming concepts.

Their study identified 21 common programming errors, grouped into four categories:

syntax, semantic, logic and type errors. Semantic and type errors were the most

common. Their results showed that semantic and type errors were the most common

[75].

Despite extensive research, there is no consistent definition of novice programmers,

as the terms 'novice' and 'expert' are context dependent. A programmer may be a

novice in some areas and an expert in others. In general, novices are individuals who

are new to programming and lack the experience, depth of knowledge and strategic

approaches of experts [76]. Several criteria and methods were used to classify novices

and these are presented below:

Duration of experience is a widely used metric. Lister defines novices as programmers

who have engaged in programming education for three to four years [76], while Sillito

et al. classify those with fewer than two years of professional programming experience

as novices [77].

Educational background is another criterion, including education levels, grades, the

number of programming languages known, and the quantity of programming courses

completed. Ricca et al. classified undergraduates as novices and graduates as experts

[78].

The size of programs written also serves as a measure of expertise. Muller categorized

programmers based on the number of lines of code in the largest program they

authored, with programmers of minimal expertise producing programs of up to 500

lines of code [79].

Research conducted by Kleinschmager et al. and Feigenspan et al. demonstrated a

positive relationship between individuals’ self-perceived programming competence

and their actual performance in comprehension tasks as well as programming
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coursework [30], [80]. Building on this approach, Bunse introduced a five-point self-

assessment scale to classify programmers, identifying those at levels one and two as

novice developers [81].

Pre-testing is another method used to assess programming experience. Biffl et al. used

pre-tests to divide subjects into groups categorized as novice, intermediate and expert

[82]. Supervisor assessment has also been used, as shown by Hannay et al. where

supervisors classified participants into similar categories based on their programming

experience [83]. These different perspectives highlight the multidimensional nature of

novice programmers, which this study will consider in the analysis.

2.5 Related work

In computer science education, flowcharts have long been recognized as effective

visual tools for illustrating program logic and helping learners to understand control

structures. A wide range of tools and techniques have been developed to improve the

pedagogical use of flowcharts. In parallel, replication studies have received increasing

attention in software engineering research to validate original findings and to explore

the challenges associated with reproducing empirical results in educational and

experimental contexts.

2.5.1 Flowchart Tools Overview

These tools help learners develop the mental models necessary to understand process

logic, using shapes such as boxes to represent processes, diamonds to represent

decision points, and directed lines to represent control flow, which typically begins and

ends at well-defined points. Flowcharts are thought to facilitate the construction of

mental models by visually representing the logical structure of a program. Previous

research suggests that visualizing algorithms can help learners to abstract away from

syntactic details and focus instead on the underlying computational logic.

Originally introduced in the 1940s by Herman Goldstine and John von Neumann as a

method for "planning and coding problems," flowcharts became indispensable in the

development of computer programs. Analysts used them to visually sketch algorithms,

which programmers then translated into machine-readable code [84]. Since then,

introductory programming courses have widely adopted flowcharts due to their
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effectiveness in improving understanding and performance for visual learners. By

providing a structured means of visualizing algorithms, flowcharts help students grasp

complex programming concepts more effectively [85].

Empirical studies have shown that flowcharts do not increase the cognitive load

associated with understanding the syntax of programming languages. By shifting the

focus away from syntax, they allow programmers to concentrate on problem-solving

skills.

For example, the original study examined the use of flowcharts alongside code

snippets, evaluating their impact on novice programmers’ comprehension. The study

assessed metrics such as fixation time, cognitive load, response time, correctness,

and subjective preference. The results showed that using flowcharts with code

snippets enhanced novices' mental models and understanding, resulting in an 18%

increase in correctness [24].

Flowchart-based programming environments have evolved to address these

challenges, enhancing their utility as educational tools. These environments reduce

syntax-related cognitive load, enable step-by-step execution, and provide real-time

variable inspection. For instance, BACCII and BACCII++, developed at Texas Tech

University, support procedural and object-oriented programming through flowchart

creation and automatic code generation. Empirical studies at the university showed

significant improvements in students’ performance when using these tools compared

to traditional methods [86], [87]. Western Kentucky University developed FLINT, which

focuses on teaching algorithm design through visual execution. While it effectively aids

visual learners, its lack of text representation limits its broader applicability [88], [89].

Similarly, Sonoma State University developed the SFC Editor, which generates

pseudocode from flowcharts but lacks execution capabilities, necessitating external

tools for program execution [90].

RAPTOR, developed at the United States “Air Force Academy”, integrates a drag and

drop flowcharting interface with features such as real-time variable inspection and

automatic code generation in multiple languages, including Ada, C#, and Java.

Research indicates that students overwhelmingly prefer RAPTOR for algorithm
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representation, and it enhances their problem-solving skills [91], [92]. Figure 2.5 shows

an example of a RAPTOR flowchart.

Andrew S. Scott created Progranimate, a web-based e-learning platform designed to

teach programming through dynamic, structured flowchart construction, synchronized

code generation in multiple programming languages, and animated execution. The

platform offers a user-friendly interface that frees students from the complexities of

syntax, enabling them to concentrate on problem-solving and comprehending the

abstractions and semantics of programming. Figure 2.6 depicts an example of a

programmer’s interface, showcasing its features and constructs.

Scott conducted an in-depth empirical study to evaluate the effectiveness of

Progranimate in enhancing the programming education of first-year undergraduate

students. The study was carried out at the University of Glamorgan and the University

of Manchester for at least 11 weeks. A total of 242 students participated, with 99

completing the final questionnaire. The results were statistically significant,

demonstrating that Programmer’s simplicity enabled students to quickly grasp

imperative programming concepts such as variables, input/output, assignment, and

calculations. The first tutorial introduced these foundational concepts in an engaging

and motivating problem-solving context, surpassing the capabilities of standard

development environments. The study's positive outcomes led to the integration of

Progranimate into programming courses at the University of Glamorgan and the

University of Manchester, showcasing its enduring value as an educational tool. Scott’s

research reinforces the importance of interactive and adaptive platforms like

Progranimate in supporting the development of problem-solving skills and fostering

deeper comprehension of programming concepts among novice programmers [93].
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Figure 2.5 An example of a RAPTOR flowchart [94].

Atanasova and Hristova developed the Flowchart Interpreter (FCI) at the University of

Rousse in Bulgaria to enhance programming education. FCI enables users to construct

and execute flowcharts visually or non-either visually, supporting novice programmers

in developing essential debugging and testing skills.

However, FCI's reliance on primitive shapes and lack of color differentiation for

flowchart construction can increase cognitive load and divert users' attention from core

programming concepts. Additionally, a literature search indicates that no published or

widely available empirical research has evaluated the effectiveness of FCI, limiting its

validation as a robust educational tool [95].
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Figure 2.6 The Progranimate programming environment [96]

Andrzejewska and Stolińska conducted an eye-tracking study to compare the

effectiveness of structured flowcharts and pseudocode for algorithm comprehension

tasks. They found that participants using flowcharts completed tasks more efficiently,

made fewer errors and reported higher levels of confidence, particularly when dealing

with complex algorithms. These results suggest that flowcharts can significantly

improve cognitive processing in challenging programming scenarios [97].

Dzidek et al. investigated the role of UML in maintenance tasks. Their empirical study

concluded that UML could improve the maintainability of software without increasing

the time required, highlighting its potential for advanced learners [98].

In a separate study, Cabo examined the integration of flowcharting into Python

instruction. He found that 66% of students believed that flowcharts made problem

solving easier. This highlights their potential as a tool for developing logical thinking

skills before engaging with syntax [99]. Similarly, Xinogalos conducted a survey of

flowchart-based programming environments and concluded that these visual platforms

improve program comprehension and foster problem-solving abilities by enabling

users to construct and understand program logic visually [100].
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Together, these studies highlight the importance of flowcharts as cognitive and

instructional tools in introductory programming education.

2.6 Replication Study

Replication plays a critical role in verifying experimental results, particularly in empirical

software engineering, where it is used to assess the consistency of outcomes across

different methods, technologies, and populations [93], [101]. In computing education,

replication has become increasingly important for validating instructional interventions

and for understanding learner behavior in diverse contexts [102].

As evidence-based practices gain prominence, replication studies are essential for

developing a cumulative body of reliable knowledge that informs educational and

practical advancements. Despite their value, replication studies face several persistent

challenges that can influence outcomes and complicate comparisons. Related factors

will be mentioned in the following sections.

In experimental research, replication refers to repeating a study under comparable

conditions, potentially with variations in sampling or context. The objective is to assess

the reliability and external validity of the finding of a previous study.

Moreau and Wiebels stated that replication requires not only duplication of procedures,

but also careful attention to the intentions and methodological integrity of the original

study. This ensures meaningful interpretation of replication results and reduces

ambiguity in assessing their consistency with the original findings [103].

Camerer et al. conducted a large-scale empirical replication of 21 high-impact social

science studies originally published in Nature and Science. Their study implemented

extended sample sizes and used pre-registered protocols reviewed by the original

authors. Only 62% of the experiments replicated statistically significant effects in the

same direction, with replicated effect sizes averaging about half those of the originals.

These results highlight the inherent challenges in replication, such as statistical power,

experimenter bias, and methodological drift. Additionally, the study noted a correlation

between expert predictions and actual replication outcomes, suggesting tacit

knowledge within the research community about result robustness [104].
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Despite its importance, replication is not without limitations. A successful replication

does not definitively validate the original findings, nor does a failed replication

categorically refute them. Variations in outcome may stem from uncontrolled variables,

methodological flaws, system complexity, or random variation. Therefore, the scientific

community increasingly evaluates replicability not as a binary measure, but as part of

a continuum of evidentiary credibility, informed by a cumulative body of research [105].

2.6.1 Challenges in Conducting Replication Studies

Replication studies are essential for validating and strengthening the reliability of

empirical research findings. However, they face a variety of methodological, technical,

and systemic challenges that can hinder their execution and impact:

● Limited Access to Original Researchers: A frequent obstacle in replication

research is the inability to contact or collaborate with the authors of the original

study. This lack of communication can impede the replication team's

understanding of methodological choices or experimental nuances, even when

documentation is provided.

● Technical Obsolescence: Replication efforts may also be compromised by the

rapid evolution of technology. Software tools, programming libraries, and

experimental platforms used in the original study may become deprecated,

incompatible, or unavailable in the intervening years.

● Variability in Participant Characteristics: Replicating studies involving human

subjects introduces inherent variability, especially in cognitive and behavioral

domains e.g., program comprehension. Differences in participant background,

skill level, and demographic profile can significantly affect results.

2.6.2 Types of Replications

Replication studies can be broadly categorized based on their methodological

alignment with the original study:

● Direct Replication: Involves repeating the original study's procedures as

closely as possible to verify its findings under nearly identical conditions [106].

● Conceptual Replication: Tests the same hypothesis using different methods

or operationalizations to evaluate the validity of the underlying theory [107].
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● Systematic Replication: Involves multiple studies with intentional

methodological or contextual variations to assess the robustness of findings.

This is more commonly related to systematic reviews than singular empirical

replications [103].

● Constructive Replication: Retains the core elements of the original study

while adding new variables or methodological enhancements to generate

additional insight [108].

2.6.3 Replication in Computer Science

Replication in software engineering serves several critical functions such as controlling

for sampling errors, testing independence of findings from specific researchers or

contexts, and confirming protocol consistency. These practices help build a resilient

empirical foundation and improve the overall quality of engineering research.

Nosek and Errington stress that replication is essential for verifying scientific claims,

including software engineering. They emphasize the value of examining findings

across different organizational settings, especially within agile development. Agile

practices are now widely adopted and have undergone replication-based evaluations

to test their effectiveness across diverse project scopes, team structures, and

organizational cultures. These studies reveal both consistent benefits and challenges

[109].

Bacchelli and Bird underscore the centrality of code review in quality assurance and

argue that replication studies offer valuable insights into how factors such as review

tools, reviewer expertise, and team interaction styles affect performance outcomes.

Comparisons between formal and lightweight review techniques across different

contexts have yielded data that inform best practices and review efficacy [110].

Harman et al. highlights the maturing landscape of software testing research and the

critical role of replication in refining testing strategies. Their findings confirm that

consistent application of test designs such as mutation testing or regression coverage

across different software systems helps to clarify which approaches are reliably

effective. This, in turn, enables the software engineering community to extract best

practices with empirical support [111].
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3 Methodology

A controlled experiment was chosen as the fixed design strategy to evaluate the effect

of flowcharts on novice programmers' code comprehension. This method involves

deliberately manipulating one or more factors, known as independent variables, while

holding all other conditions constant. The resulting changes are measured in terms of

their impact on one or more dependent variables, allowing researchers to assess

causal relationships [112].

At this stage of the study, the research objective, the independent and dependent

variables, and the hypotheses are clearly defined. These components directly

influence the experimental design and guide how the hypothesis will be tested

empirically through structured observation. They also determine how variations in the

independent variable are expected to affect the dependent variable under controlled

conditions. Careful definition and operationalization of these elements guide the overall

research design and inform the procedures for data collection, measurement, analysis

and hypothesis testing. Runeson et al. stated that the more thoroughly these

preparations are completed, the smoother the experiment will proceed [112].

3.1 Goal

The primary objective of this replication study is to verify the findings of a previous

study that examined the effectiveness of flowcharts as a visual aid in supporting novice

programmers' code comprehension. The original study suggested that flowcharts

improved understanding of control structures and algorithmic flow by facilitating the

development of appropriate mental models [24].

This replication aims to assess whether the benefits observed in the original study such

as improved task correctness, increased fixation time, and stronger subjective

preference can be reproduced under similar experimental conditions with a new

sample of participants and a revised set of three algorithmic tasks. Following the

methodology, measurement tools and experimental design of the original study, this

research seeks to assess the generalizability and robustness of the findings in the

context of visual aids in computer science education. The research question is

formulated as follows:
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RQ: Can the impact of flowcharts on novice programmers’ comprehension be verified

through replication under similar experimental conditions?

3.2 Modifications to Experimental Material

In this replication, three of the original code snippets (i.e. MultiplicationByAdding,

SumOfIntervalNumbers and DiffPosAndNegNumbers) were replaced with

BinarySearch, BubbleSort and Power. This change was made to better reflect a wider

range of algorithms commonly taught in introductory programming courses, and to

provide a more comprehensive test of the effectiveness of flowcharts in supporting

code comprehension. These algorithms are standard components of undergraduate

science education and are used to introduce key concepts such as iteration, recursion,

decision making, and algorithmic efficiency, as outlined in Introduction to Algorithms

by Cormen et al. [113].

The substitution was further motivated by observations from the original study where

participants showed limited engagement with the flowcharts associated with the

replaced algorithms. These tasks also had the highest correct rates, suggesting that

their low complexity or familiarity may have led participants to disregard the visual aids.

To address this, the newly selected snippets provide a slightly greater cognitive

challenge, encouraging more active and purposeful interaction with the flowcharts

during the comprehension process.

A pilot study was conducted with the new snippets (BinarySearch, BubbleSort and

Power) to ensure that they matched the difficulty of the remaining original tasks. The

results confirmed that these snippets were appropriately challenging and consistent

with the experimental design. Their inclusion supports a more nuanced examination of

how flowcharts influence understanding of different algorithmic structures, thus

supporting the broader aim of the study. This replication also uses the same pre-

questionnaire as the original research, including the self-estimation item, but

introduces specific redesigns to improve clarity, precision, and participant usability.

Most notably, the self-estimation question now uses a five-point Likert scale to assess

participants’ perceived programming experience. This structured and intuitive format

facilitates more accurate self-assessment and reduces cognitive load during the

questionnaire [40].
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Similarly, the post-questionnaire was modelled on the original version but refined to

increase both specificity and participant engagement. Whereas the original study relied

primarily on open-ended questions about task-solving strategies and the use of

flowcharts, this replication used a mixed format approach, including five-point Likert-

scale items, open-text responses, and pre-defined reasoning options. These

extensions provide a more detailed insight into participants' subjective preferences and

cognitive strategies, ultimately supporting a richer interpretation of the experimental

results.

3.3 Independent Variable

Independent variables are the treatments or conditions intentionally manipulated to

observe their effect on the dependent variables [112]. They are the primary factors

under studied in experimental research, allowing researchers to explore cause and

effect relationships and test specific hypotheses. In this study, the independent

variable is the presence of a flowchart accompanying comprehension tasks. More

specifically, the study examines whether the inclusion of a flowchart alongside the

source code influences the program comprehension processes of novice

programmers.

3.4 Dependent Variables

Dependent variables are the outcomes measured in an experiment to assess the effect

of changes in the independent variable . They reflect the response or effect and are

typically observed quantitatively or qualitatively to assess the success of the treatment

or condition applied. In this study, the dependent variable is program comprehension,

which is assessed using the same metrics defined in the original study. The dependent

measures include:

• Visual attention: Measured by eye-tracking, specifically the fixation duration on

AOIs.

• Correctness: Defined as the percentage of correct responses given during the

comprehension tasks.

• Response time: The total time taken by participants to read and respond to

each comprehension task.
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• Mental workload: Assessed using EEG data and operationalized as the ratio

of theta/alpha brain wave frequencies, a recognized indicator of cognitive load.

• Subjective preference: Based on participants' expressed preference for

completing tasks with or without flowcharts.

3.5 Hypotheses

A hypothesis is a testable statement that predicts the relationship between one or more

variables and serves as the basis for statistical analysis [112]. In this study, as in the

original research, hypotheses are formulated to evaluate the effect of flowcharts on

novice programmers' code comprehension. These hypotheses are based on the

existing literature, which suggests that visual aids such as flowcharts can have a

positive impact on program comprehension and reduce cognitive load. To investigate

this, several performance indicators will be analyzed, including response time,

correctness, visual attention, and cognitive load, to explore how the presence of

flowcharts influences comprehension outcomes. The hypotheses used in this

replication study were adopted directly from the original research to ensure

methodological consistency and to effectively address the objectives of this study [24]:

H1: Participants refer to flowcharts in addition to code snippets.

Ho1: Participants do not refer to flowcharts in addition to code snippets.

H2: Participants using flowcharts take less time to complete the comprehension tasks.

Ho2: There is no significant difference in response time of comprehension tasks due

to the use of flowcharts.

H3: Participants using flowcharts answer with a higher correction rate.

Ho3: There is no significant difference in correctness of comprehension tasks due to

the use of flowcharts.

H4: Participants using flowcharts have a lower cognitive load during the

comprehension tasks.

Ho4: There is no significant difference in cognitive load during comprehension tasks

due to the use of flowcharts.

H5: Participants prefer flowcharts in addition to code snippets.

Ho5: Participants do not prefer flowcharts in addition to code snippets.
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Hypotheses H1 to H4 will be assessed using quantitative data collected through eye

tracking, EEG analysis and performance metrics. Hypothesis H5 will be tested

qualitatively through a post-questionnaire interview focusing on subjective user

preference and perceived helpfulness of flowcharts.

3.6 Participants

This replication study focuses on the comprehension process of novice programmers,

but the sample of participants differs from that of the original study. Although there is

no universally accepted definition of a novice programmer, several criteria such as

years of programming experience, education level, project size, and familiarity with

programming languages were considered [30]. The original study also relied on a

combination of these factors to define novice participants. Accordingly, this study

adopts a similar approach, collecting data on participants' academic and professional

programming experience, familiarity with programming languages, and relevant

demographic information to ensure comparability and validity in the replication

process.

A prequestionnaire was used to assess participants’ coding background, including self-

estimated programming experience, to ensure consistency in participant classification.

The questionnaire also assessed familiarity with key concepts such as languages and

paradigms. For example, participants were asked to compare their skills with those of

their course peers and with professionals with over 20 years' experience. Peitek et al.

observed that while traditional measures (e.g., years of experience) do not consistently

predict programming efficiency, subjective indicators such as self-estimation and

motivation to learn show stronger correlations with performance [114].

To participate in this study, individuals were required to have received a minimal

education in computer science domain, including basic knowledge of Java syntax,

control structures, and arrays, as well as limited experience with fundamental

programming tasks.

Participants were also required to be at least 18 years old and have at least one and a

half hours available to complete the study.
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Recruitment was conducted via announcements posted in the Opal forum and on

social media groups associated with various modules in the Department of Computer

Science at Chemnitz University of Technology. To ensure anonymity, no personally

identifying information was linked to the collected data.

In the invitation email, available time slots were listed, and appointments were

scheduled directly with the experiment supervisor based on students’ availability. The

prequestionnaire was hosted online on the SoSci platform, distributed via email, and

responses were collected alongside participants' demographic information.

3.7 Confounding Factors

Confounding factors are extraneous, unwanted variables that can affect both the

dependent and independent variables in an experiment [112]. These variables need to

be controlled by using appropriate methods and techniques to minimize bias. To

ensure the validity of the results, any observed effects should be attributed to the

confounding variable and not to the independent variable.

• Program experience is widely recognized as an important confounding factor in

software engineering experiments and is defined by researchers using various

criteria such as years of experience, number of projects completed, self-

assessment, pre-tests, educational level, and supervisor ratings [115]. In this

experiment, participants are given a prequestionnaire that includes self-

assessment questions, and only those who meet at least one definition of a

novice as described in section 2.4 are allowed to proceed with the experiment.

• Prior experience with the material or tools may influence participants’

performance, providing an advantage in task comprehension [116]. To control

this, familiarity was assessed via a prequestionnaire. In addition, all participants

were given a standardized introduction to the flowchart representation before

the experiment began to ensure consistent understanding across the sample.

• Long or repetitive sessions can reduce attention and motivation, affecting

cognitive performance in later tasks [116]. This experiment was therefore

designed as a single, concise session to minimize fatigue.
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• Concerns about being judged or evaluated may inhibit participants’

performance, particularly if they believe the results may impact their academic

standing [116]. Participants were assured of full anonymity and informed that

their performance would not influence their course grades.

• Ensuring that all participants follow the experiment protocol precisely is vital to

avoid procedural bias [116]. Participants were instructed not to use any external

resources and to complete the tasks in one uninterrupted sitting. Completion

times were recorded, and outliers caused by distraction were excluded from the

analysis.

• Tasks left incomplete can introduce bias. In this study, incomplete responses

were flagged and excluded during the analysis phase to maintain data integrity.

• The participant recruitment process was carefully designed to align with the

study objectives, as described in the previous section [116].

• The sequence of tasks may influence performance if participants improve with

practice [116]. To mitigate this, tasks were presented in randomized order.

Additionally, a set of dummy tasks was administered at the beginning of the

session to acclimate participants to the experimental environment

• Mono-method bias occurs when only a single measure is used to quantify a

variable [116]. To counter this, the study employed multiple assessment

measures, including eye tracking, EEG, and subjective questionnaires.

• Inter-individual differences, such as variations in cognitive abilities and personal

characteristics can influence performance outcomes [116]. A within-subjects

design was employed to control such variability, allowing each participant to

serve as their own control.

• Technical problems, such as computer malfunctions or missing participant

questionnaires, can occur during experiments [116]. These problems can affect

the results as participants may have to repeat tasks or data may be lost. To

avoid bias, data from affected participants are excluded from the analysis.

• Intelligence lacks a clear definition and includes skills such as problem solving

and memorization [116]. To minimize its impact, task complexity was

intentionally kept low to avoid requiring advanced cognitive skills.
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• Motivation significantly influences the effort invested in a task and,

consequently, performance. Higher individual interest generally improves

engagement and learning outcomes [117]. In this study, all participants

volunteered after receiving a brief explanation of the study's relevance, fostering

intrinsic motivation.

3.8 Experiment Material

The materials used in this replication study include code snippets, a pre-questionnaire,

and a post-questionnaire. These materials closely follow the structure of the original

study, with minor modifications to the questionnaire design for improved clarity. Each

component is described in detail in the following sections.

3.8.1 Code Snippet Selection

The selection of code snippets plays a crucial role in shaping participant performance

and engagement throughout the study. To ensure methodological consistency and

comparability with the original study, most of the original snippets were retained.

However, the following three snippets were replaced: MultiplicationByAdding,

SumOfIntervalNumbers, and DiffPosAndNegNumbers. The reasons for these

replacements are provided in section 3.2.

To guide this replacement, a rigorous selection process was used to identify

BinarySearch, BubbleSort and Power as suitable replacements. These new snippets

were selected based on the following criteria derived from the original study:

• Avoidance of domain-specific knowledge: As participants are novice

programmers, snippets requiring specialized knowledge (e.g., advanced data

structures or classes) were excluded. Such complexity could reduce

engagement, increase response times, and limit the collection of meaningful

data [119].

• Sufficient complexity to require dual-modality comprehension: The selected

snippets should be sufficiently complex to encourage participants to consult

both the source code and the associated flowcharts. Simpler snippets may

allow participants to rely solely on the code, limiting insights into the use of

flowcharts.
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• Encourage bottom-up comprehension strategies: Snippets should avoid

recognizable patterns or "beacons" that allow participants to immediately infer

functionality without detailed analysis. This ensures a more authentic

measurement of comprehension effort and avoids biased results [32].

• Inclusion of core programming constructs: All snippets include basic concepts

commonly taught in introductory programming courses, such as control

structures, loops and conditionals. Advanced concepts have been deliberately

avoided to maintain accessibility for beginners.

• Prior validation through pilot studies: The snippets were tested in preliminary

studies to ensure that they were suitable for assessing program

comprehension in novice participants.

3.8.2 Pre-questionnaire

Pre-questionnaires are a fundamental tool in software engineering research to assess

participants' experience and background, as emphasized in previous studies [112].

This prequestionnaire follows the same approach as the original study, but with slight

modifications to the design. This questionnaire uses a five-point Likert scale to assess

participants' perceived programming experience. This scale provides a more intuitive

and structured approach to self-assessment. According to Likert (1932), reducing the

number of response categories can more effectively capture attitudes and self-

perceptions, especially when respondents are not domain experts [40]. Each level on

the scale is clearly labelled 'Beginner', 'Novice', 'Competent', 'Proficient', and 'Expert'

to help participants quickly identify where they fit without over-analyzing. This

simplification minimizes cognitive load and encourages more accurate and reliable

responses. In the original study, participants were asked a combined question such

as: "How do you estimate your programming experience compared to fellow students

and experts with 20 years of practical experience on a scale from 1 to 5?" [24]. This

question design may have caused confusion as it involved two different comparison

groups, colleagues and experienced professionals within a single item. To address

this issue, in this replication study the question was redesigned and split into two

separate items: one comparing participants' experience to that of their course peers,

and another comparing it to that of experienced professionals.
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This modification is based on the understanding that novice programmers may assess

their skills differently depending on the reference group. The mean concept of the

prequestionnaire was adopted exactly as it appeared in the original study. However,

modifications were made to the design layout of the questionnaire to improve clarity

and usability. The redesigned pre-questionnaire in this study is as follows:

• How long have you been programming for educational purposes? (In years)

• How long have you been programming professionally? (In years)

• How do you estimate your programming experience on a scale from 1 to 5?

Beginner Novice competent proficient Expert

O O O O O

• How do you estimate your programming experience compared to fellow

students?

Significantly
less

experience
than most
students.

Less
experience
than most
students.

About the same
level of

experience as
most students.

More
experience
than most
students.

Significantly more
experience than
most students.

O O O O O

• How do you estimate your programming experience compared to experts with

20 years of practical experience?

I have
significantly less
experience

I have less
experience

I have
comparable
experience

I have
more

experience

I have
significantly
more

experience.

O O O O O
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• How do you estimate your experience using flowcharts to visualize or design a

program on a scale from 1 to 5?

Not at all
experienced

A little
experienced

Moderately
experienced

Mostly
experienced

Fully
experienced

O O O O O

• How experienced are you with the following programming languages on a scale

from 1 to 5?

Programming
Language

No
Experience

Basic
Understanding

Competent Experienced Expert

Java O O O O O

C O O O O O

Python O O O O O

JavaScript O O O O O

• How many additional programming languages do you have moderate

experience with?

• How experienced are you with the following programming paradigms on a

scale from 1 to 5?
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No
Experience

Basic
Understanding

Capable Experienced Expert

Functional
programming

O O O O O

Object-oriented
programming

O O O O O

Imperative
programming

O O O O O

Logical
programming

O O O O O

3.8.3 Post-questionnaire

The post-questionnaire plays an important role in this study, providing insight into

participants' strategies and preferences during the comprehension tasks [112]. It is

designed to determine how subjects engaged with the flowcharts, whether they found

them helpful, and what approaches they used to complete the tasks. This post-

questionnaire closely follows the structure of the original post-questionnaire but

introduces targeted enhancements to increase specificity and participant engagement.

Whereas the original study relied primarily on open-ended questions about task-

solving strategies and flowchart use, this study expands the format to include five-point

Likert scale items, open-ended questions, and pre-defined reasoning options. These

additions allow for a more nuanced analysis of participants' subjective experiences and

cognitive processes. At the end of the experiment, participants were shown the tasks

they had completed on the first screen, along with the corresponding flowcharts. This

allowed them to review and reflect on the material.

The post-questionnaire was then presented on a second screen. If necessary,

participants could return to the first screen at any time to refresh their memory before
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answering the questions and were encouraged to review these tasks during the

interview to identify which flowcharts they found helpful or unhelpful. This interactive,

visual method was designed to improve recall and response accuracy, aligning with

research showing that visual aids can improve memory retrieval during interviews

particularly in task-based assessments [120].

To assess participants' preferences and strategies. The following questions were

included in the post-questionnaire:

• Please indicate which tasks you found the use of flowcharts helpful and which

you did not, giving a reason for your answer, e.g. on the first screen you can

navigate through your completed tasks:

 Helped me understand the task.

 Avoid ambiguity in the task.

 Task was easy.

 It is a new strategy for me, and I am not comfortable using it.

 I used to program with code.

 I am a visual or verbal learner.

 Others, provide your own reason.

• Could you describe the approach or strategy you used to solve the tasks?

• How much did you refer to the flowcharts and how much to the code?

• For which task did you spend more time, when there was a flowchart present or

not?

• Did the presence of flowcharts in the task impact your understanding of the

source code on a scale from 1 to 5?

Not helpful Slightly
helpful

helpful very helpful Extremely
helpful

O O O O O
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• If flowcharts were not provided in the tasks, would you have preferred their

inclusion to aid task-solving?

 Strongly agree – I believe that flowcharts would greatly improve task

comprehension and make problem-solving alongside code more

efficient.

 Somewhat agree – I think flowcharts could offer some help in solving

tasks, but they are not essential for understanding.

 Neutral – I am indifferent about the inclusion of flowcharts and do not

feel they would significantly affect my approach to task-solving.

 Somewhat disagree – I find flowcharts somewhat unnecessary and

believe they might complicate the task-solving process.

 Strongly disagree – I prefer to approach tasks without flowcharts, as I

find them unhelpful in understanding or solving problems.

• Did you use flowcharts as a learning tool in your introductory programming

classes?

 Yes, in all introductory classes.

 No, they were not used.

 Yes, but only in one specific course.

 Yes, in several but not all introductory classes.

3.9 Tasks

Program comprehension studies ask participants to complete specific programming

tasks. These tasks are designed so that successful completion requires a clear

understanding of the code. By measuring the effort and accuracy required to complete

these tasks, researchers can gain insight into the difficulty of understanding the code

[119]. The program comprehension and software engineering literature use a variety

of tasks to assess how well participants understand code, algorithms and software

processes. Common tasks include debugging, tracing, predicting output, and

modifying code [121], [122].
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Variable name obfuscation enforced a bottom-up processing approach, requiring

participants to understand the code from basic principles rather than relying on

contextual cues and prior knowledge. The comprehension task can be outlined as

follows:

• Each comprehension task consisted of two slides. On the first slide, participants

are presented with either a standalone code snippet or one accompanied by a

flowchart and are instructed to determine the task's output. Each

comprehension task includes the input, and all necessary details required to

reach the solution, as illustrated in Figure 3.1.

Figure 3.1 The comprehension task.

• On the second slide, participants are presented with four possible answer
choices and are required to select the correct one. If they are uncertain, they
have the option to skip the question, as illustrated in Figure 3.2. This feature
helps ensure the results remain more accurate and freer from guesswork-
related bias.
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Figure 3.2 Answer Options for the Comprehension Task.

As mentioned above, a flowchart can be presented alongside the corresponding code

snippet. To ensure that the flowchart does not introduce unintentional bias, its design

must adhere to consistent and neutral standards. Therefore, the following aesthetic

criteria have been established to guide the construction of flowcharts:

• Only the universal standard symbols for flowcharts were used to ensure clarity

and consistency across all visual aids.

• Program logic was presented in a clear, unidirectional flow from top to bottom

and from left to right.

• Each symbol in the flowchart had a single-entry point (start) and exit point

(end), except for the decision symbol, also only standers symbols were used.

These are illustrated in Table 3.1.

• Syntax highlighting is retained in both the source code and the flowcharts, as it

is commonly used in major IDEs. Removing it from the snippet code could

change the behavior of the participants.

• The textual content within the flowcharts exactly mirrored the accompanying

code snippets, including all syntax elements such as type notations (int),

semicolons (;) and method calls (System.print.out).

• The borders of the flowchart shapes were color-matched to the syntax

highlighting of the source code, maintaining a visual balance that facilitates

comparative analysis.

• Font size and line spacing were carefully chosen to optimize readability and

facilitate the analysis of visual attention data, ensuring that participants could

comfortably engage with both the code snippets and flowcharts.

• Following established aesthetic and functional criteria ensures that the three

replacements mentioned in the snippet selection section of this replication

study are unbiased and fully consistent with the methodology of the original

study.
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Shape Meaning

Oval: Indicates the start or end of a

flowchart.

Represents processing steps, such as

calculations or data manipulation.

Rhombus: Used for decision points,

where the flow branches based on

different conditions or choices.

Table 3.1 Standard Symbols of flowcharts [24].

Figure 3.3 illustrates the code snippet and flowchart design used in this study. This

design was developed based on the criteria. The design aims to minimize potential

bias and facilitate the collection of meaningful visual attention data.

Figure 3.3 Comprehension task Code snippet with Flowchart.
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3.10 Experiment Design

This study employed a within-subjects design, replicating the original study's

approach with minor modifications to align with the current research objectives.

These modifications are detailed in subsequent sections. Participants whose data

were included in the final analysis completed two types of comprehension task.

One task involved code snippets presented alongside flowcharts, while the other

involved code snippets alone. The key elements of the experimental design are

summarized as follows:

• The experiment consisted of 14 comprehension tasks in total. Seven of these

were presented with code snippets only, while the other seven were presented

with code snippets accompanied by flowcharts.

• Participants were given a total of 30 minutes to complete the tasks, followed

by a 5-minute post-task interview.

• To mitigate the effects of order and learning, the order in which the code

snippets were selected in Section 3.8.1 was randomized for each participant.

Tasks alternated between two conditions: a code snippet on its own, or a code

snippet presented alongside a flowchart. Crucially, no participant encountered

the same algorithm in both conditions. For instance, if a participant

encountered the BinarySearch algorithm in the code-only condition, it would

not appear again in the code alongside the flowchart condition. This ensured

that familiarity with an algorithm from a previous task would not influence

performance.

• After each task, participants were given a five-second rest period with a cross-

fixation stimulus. This was an amendment to the original study, which

employed a 10-second interval, in order to reduce both the overall session

length and participant fatigue.

• Before beginning the comprehension tasks, participants were given

instructions on how to interpret the flowcharts and were guided through a

practice task. This was done to minimize learning effects during the actual

experiment and ensure consistency across participants.
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3.11 Tools

To ensure consistency and enhance comparability with the original study, the same

tools were used throughout the experimental process. The SoSci Survey platform was

also used to administer the pre- and post-questionnaires, improving the efficiency of

data collection by providing a streamlined, structured digital process. The following

sections contribute detailed descriptions of each tool used in the experiment.

3.11.1 Eye Tracker

Eye tracking enables visual attention to be measured by recording where participants

focus their gaze. This study used the same Tobii Pro X3-120 EPU eye tracker as the

original study [24]. The device projects invisible infrared light into the eyes and uses

high-resolution cameras to record corneal reflections. Advanced algorithms then

compute gaze direction and subtle eye movements. The Tobii Pro X3-120 captures

data at a rate of 120 samples per second, providing detailed insights into participants'

visual behavior [123]. The tracker was positioned beneath the stimulus screen, with a

screen resolution of 1920×1080 pixels and physical dimensions of 51.1×28.7 cm.

Participants were seated approximately 60 cm from the screen and 65 cm from the

eye tracker as shown in Figure 3.4. Proper alignment was verified using Tobii's position

guide, which displays facial contours and indicates correct eye detection by turning the

background green [124]. Communication with the device was managed using the Tobii

SDK and controlled via Python on a Windows 10 system.

Figure 3.4 Positioning the participant and the eye tracker [125].
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3.11.2 EEG

As in the original study, EEG data were recorded using the CGX Quick-20r wireless

headset. This system features dry sensors and adheres to the 10–20 international

electrode placement system. The Quick-20r is equipped with interchangeable dry

sensors that comfortably conform to different scalp shapes and sizes.

Prior to recording, the system provides visual feedback to indicate correct electrode

placement through green status lights, as illustrated in Figure 3.5. This ensures

accurate and reproducible measurements [125].

Figure 3.5 CGX EEG Headset [126].

3.11.3 PsychoPy

The experimental stimuli were presented using PsychoPy, which is an open-source

psychophysics software written in Python. PsychoPy supports precise visual rendering

via OpenGL and was used to display code snippets and flowcharts in full-screen mode,

as in the original study. Participants navigated the options using the arrow keys and

confirmed their responses using the spacebar. Minor adjustments were made for this

replication, such as library updates and the integration of marker signals for

synchronizing EEG and eye-tracking data [127].



58

3.11.4 SoSci Survey

The SoSci Survey platform was used to administer the pre- and post-questionnaires.

This web-based tool allows participants to complete surveys without having to install

any software. SoSci Survey facilitated the collection of structured data in alignment

with the design of the experiment [128].

3.12 Ethical Considerations and Academic Integrity

All textual references and paraphrased ideas in this thesis are derived from published

works and are properly cited in accordance with academic standards. Any closely

aligned wording was used for the purpose of accuracy and clarity, in line with the intent

of replication and literature synthesis.
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4 Conduct
This chapter provides a detailed outline of the implementation process of the present

study, covering every step involved. It also describes the participants and the data

collection procedures.

4.1 Participants Demographics

A total of 11 students participated in the study, each completing the test within 30

minutes or less. Subjects reported between 2 to 5 years of academic programming

experience. Only five participants had professional programming experience, with a

maximum of 1.5 years, while the rest reported no such experience. Subjects were also

asked to assess their programming skills in comparison to their classmates and to

experts with 20 years of professional experience. Most participants rated themselves

as having intermediate acquaintance relative to their peers but considered their

expertise insufficient when compared to seasoned professionals. Additionally, they

evaluated their familiarity with Java programming as moderate. Regarding experience

with flowcharts, more than half of the participants 7 out of 11 rated themselves as “a

little experienced,” indicating limited prior exposure. One participant reported no

experience at all, while three participants identified as “moderately experienced”. Table

4.1 presents a detailed overview of the participants’ demographic and background

characteristics.

Male 6

Female 5

Age (in years) 27.6 ± 4.4

Learning Programming (in years) 3.9 ± 1.4

Professional Programming (in

years)

0.8 ± 1.2

Flowchart Experience 2.2 ± 0.6

Table 4.1 Participants Demographics.
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4.2 Procedure

This section provides a detailed outline of the experimental procedure. Figure 4.3

Overview of the Experimental Procedure. presents an overview of the experimental

workflow, covering each step from participant recruitment to the post-interview phase

as follows:

1. An invitation message is posted in the OPAL platform and in social media

groups for various modules offered by the Department of Computer Science at

Chemnitz University of Technology. The message clarifies that participation is

voluntary and will not impact course grades.

2. The invitation includes information about the importance of the participant's

involvement in supporting scientific research and their specific role in the study.

It provides contact email for questions, offers time slots based on the

participant's availability, confirms that the study will take approximately one

hour, and states that it will take place in the university's campus laboratory.

3. Once participants select a convenient time slot, they receive an email containing

a brief description of the experiment along with general instructions. This email

also includes a link to the pre-questionnaire.

4. In the next step, participants complete the pre-questionnaire, which gathers

demographic details and asks them to self-assess their programming

experience.

5. On arrival at the laboratory, the students are given the following instructions:

• All collected data was anonymized to ensure participant privacy.

• All necessary instructions for the tasks will be displayed on the screen before

the experiment begins.

• Participants are encouraged to attempt all tasks, but any task can be skipped

if the participant is unsure of the answer. This flexibility is provided to ensure

unbiased results.

• A sample Java task and a brief guide explaining the flowchart symbols will be

provided to familiarize participants with the procedure before the main

experiment begins.
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• The visual gaze data will be recorded using an eye tracker. A calibration

process is required to configure the device accurately before beginning the

experiment.

• An EEG device will be used to record brain activity during the experiment. A

calibration process for the EEG device is also required.

• In order to obtain high quality data, it is important that participants remain as

relaxed as possible and minimize any body movements throughout the

experiment.

6. Participants will review the data protection form, which provides a detailed

description of the entire data collection process. Any questions the participants

may have will be answered at this stage. If participants agree to the terms and

conditions and sign the form, the experiment can proceed.

7. The EEG machine is then calibrated. Each electrode in the EEG cap must be

individually adjusted according to the participant's hair density and head size.

The duration of this process varies depending on these factors, but it takes

approximately 10 to 15 minutes. The CGIX software is used to display the

impedance levels for each electrode. When an electrode's impedance is at an

acceptable level, it is indicated by a green light as illustrated in Figure 4.1. All

electrodes must reach acceptable impedance levels to complete this step.

Figure 4.1 EEG-Signals and Calibration [24].
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8. The eye tracker is then calibrated. The participant sits approximately 60 cm

away from the screen, and the monitor height is adjusted for optimal positioning.

The Eye-tracker Manager software shows a green screen, as illustrated in

Figure 4.2, when the participant is properly aligned. During calibration, the

participant is asked to focus on 12 specific points displayed on the screen. Once

completed, the system calculates and visualizes the calibration accuracy. If the

accuracy is deemed inadequate, the procedure can be repeated. once the

participant is correctly positioned

Figure 4.2 Eye Tracker Calibration [124].

9. Once the calibration is complete, the participant is ready to begin. The study

presentation is displayed on the screen, with instructions and general

information.

10.The participant is first presented with training tasks. The introduction phase

includes a brief overview of flowcharts, followed by two practice tasks designed

to familiarize participants with the experimental setup. The first practice task

features only a code snippet, while the second pairs a code snippet with a

flowchart.

11.Next, the participant proceeds to the main comprehension tasks. A fixation

cross is displayed for five seconds between each task to mark transitions.

12.The experiment concludes either once all 14 tasks are completed or when 30

minutes have passed—whichever occurs first. At that point, the EEG cap is

removed, and the eye-tracking system is deactivated.

13. A post-questionnaire interview is conducted immediately after the experiment,

this process gathers insights into the participant's experience and preferences,

particularly regarding the use of flowcharts.
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14.The participant is warmly thanked for their valuable contribution before they

leave the lab.

Figure 4.3 Overview of the Experimental Procedure.

4.3 Data Collection

Once the study is complete, the collected data will be available in the following

formats:

1. Participants' responses: Answers and response times are saved in CSV files,

automatically generated by PsychoPy at the end of the study.

2. Eye-tracking data: The horizontal (X) and vertical (Y) gaze coordinates for

both eyes are recorded and stored in CSV files, generated using the Tobii Eye

Tracker SDK for Python.

3. EEG data: Brain activity is captured from 19 channels and saved in FIF forma;

this data is recorded in real time using CGX software.

4. Survey data: Responses to the post-questionnaire are collected in CSV files

using SoSci Survey, and the recorded responses are saved in M4A and MP3

formats.
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5 Data Analysis and Results

The primary objective of this replication study is to examine whether using flowcharts

improves the code comprehension among novice programmers. Several evaluation

metrics were employed to assess this: visual attention, correctness, response time,

cognitive load and subjective preference. These metrics were selected to align with

those used in the original study, thereby ensuring comparability and consistency. Data

for each metric was collected using a controlled experimental design with a within-

subjects approach. This section outlines the procedures followed for data pre-

processing, characterization and analysis, with the aim of answering the research

question and validating the proposed hypotheses.

5.1 Data Preparation

This study aims to determine whether the analyzed data supports the hypothesis that

flowcharts have a positive impact on the code comprehension of novice programmers,

in line with the original study's findings. To ensure methodological alignment and

comparable results, this replication employed the same performance measures as the

original study: visual attention, cognitive load, response time, correctness, and

subjective preference. Data for these measures were collected using a controlled

experimental design with a within-subjects approach. This section outlines the steps

taken to pre-process and analyze the data in order to evaluate the proposed

hypotheses and answer the central research question.

5.1.1 Time and Correctness Data Processing

This phase involves cleaning, processing and transforming raw data into a structured

format that is suitable for analysis. This includes removing irrelevant entries,

addressing missing values, identifying and mitigating outliers, and minimizing potential

sources of bias, in order to ensure the integrity and reliability of the dataset.

The response time and correctness data were recorded in CSV files, with columns for

the participant ID, the code snippet, the response time and the correctness. The

'Correctness' column includes three values: 'Yes' for correct answers, 'No' for incorrect

ones and 'Skip' for unanswered comprehension tasks.
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Response time was measured using PsychoPy, with data collected across different

task routines. The first routine measures the time that a participant spends analyzing

the code before pressing the spacebar to proceed. The second routine is triggered

when the spacebar is pressed, displaying the four multiple-choice options.

For the purposes of this analysis, only the response time from the first routine was

considered, as this reflects the participant's initial comprehension efforts. The timing

data and labels indicating whether the answer was correct were manually extracted

from the raw CSV logs and compiled for statistical evaluation.

5.1.2 Eye Tracking Data Processing

The eye tracker data were extracted from CSV files, filtered, and time normalized.

Unnecessary columns were removed, and the gaze point coordinates were mapped to

the display coordinates according to the predefined screen resolution settings. The

column names were manually adjusted to match the format required by the I2MC

fixation classification algorithm. The I2MC was then applied to detect fixation events,

and the results were saved for further analysis [126]. The fixation data were then

integrated with AOIs, allowing AOI-based analysis by determining which fixations

occurred within the predefined regions of the screen.

Finally, key eye-tracking metrics were calculated, including the number of fixations,

total fixation duration within flowcharts and code, fixations within specific AOIs, and

transitions between AOIs. Python scripts were used to process and extract data from

the CSV files.

5.1.3 EEG Data Processing

The raw EEG data file contains recordings of electrical brain activity from various

regions. First, any unnecessary channels were removed to ensure that only the

relevant signals were retained. The standard 10–20 montage was then applied to

ensure consistency [129]. Next, a bandpass filter (0.5–40 Hz) was applied to eliminate

unwanted signals outside the desired frequency range. Further cleaning of the data

was achieved by applying ICA algorithm to identify and remove artefacts such as eye

movements and muscle activity that could interfere with the analysis [130], [131].
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The iClabel algorithm was then used to remove components unrelated to brain activity,

resulting in a more precise signal for subsequent analysis. Finally, the theta-to-alpha

ratio (TAR) was calculated to assess brain workload [69].

5.1.4 Data Cleaning

Data cleaning is applied to the results of previous steps to ensure accuracy. Any

observations marked as 'skipped' in the 'Accuracy' column are removed. Additionally,

comprehension tasks with response times of less than 10 seconds are excluded. The

final cleaned data are presented in the following sections.

5.2 Descriptive Statistics

Descriptive statistics are used in this section to effectively present the data collected.

Various visualization techniques such as tables, boxplots, histograms and percentage

calculations are used to highlight key findings. These methods help to summarize the

most relevant aspects of the results and support the evaluation of the hypotheses.

5.2.1 Eye Tracking Data Results

The eye-tracking data was examined to assess whether participants directed their

attention to the flowcharts during the comprehension tasks. In this study, each

participant completed tasks that involved either code snippets alone or code

accompanied by flowcharts. For each algorithm, the total fixation time on both the code

region and the flowchart area was calculated to evaluate visual attention patterns.

Table 5.1 presents the distribution of fixation times recorded during the comprehension

tasks. On average, participants spent 34.11 seconds fixating on code snippets when

no flowcharts were provided. In contrast, when flowcharts accompanied the code, the

average fixation time was 27.04 seconds for the code and 10.08 seconds for the

flowcharts. The fixation time over code snippets is reduced by 7.07 seconds (20.73%)

when flowcharts are present. The total fixation time over the stimulus increases by 3.01

seconds (8.82%) when flowcharts are present.

A minimum threshold of 10% of the total fixation time is used to determine whether a

flowchart was used in each observation. A flowchart was considered to be used if a

participant’s fixation time on it exceeded the defined threshold. Table 5.2 summarizes
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the number of comprehension tasks in which flowcharts were actively utilized, along

with the corresponding fixation time distribution for each participant.

Code Alone Code in addition to Flowcharts
Algorithm Total

Respon
ses

Mean
Fixation
Total (s)

Total
Responses

Mean
Fixation
Time

Code (s)

Mean
Fixation
Time

Flowchart
(s)

Mean
Fixation
Total (s)

binarySearch 2 19.1 5 55.36 0.87 56.23

bubbleSort 6 4.63 3 13.13 8.49 21.61

concatlists 4 22.31 4 35.86 14.33 50.19

countEvenNumbers 4 15.5 5 21.73 3.02 24.76

crosssum 6 47.23 2 7.72 0 7.72

decimalToBinary 5 44.46 5 27.59 19.1 42.87

dropNumber 5 46.27 4 70.38 1.13 71.51

findTheLargest 1 19.23 9 13.07 10.58 22.47

firstAboveThreshold 5 30.25 5 25.19 23.59 48.78

hindex 5 30.92 6 32.83 21.79 49.15

integertoString 4 86.76 4 47.89 12.85 57.54

isPrime 7 27.2 4 23.91 5.75 29.67
power 5 8.29 5 9.74 6.67 15.08

removeDoubleCharacters 4 72.66 5 2.14 0 2.14
TOTAL 63 34.11 66 27.04 10.08 37,12

Table 5.1 Fixation Time Results

Code Alone Code with Flowcharts
Participant Total

Responses
Mean
Fixation
Time (s)

Total
Responses

No. of tasks
were

Flowcharts
where used

Mean
Fixation
Time Code

(s)

Mean
Fixation Time
Flowchart (s)

Participant 1 7 29.31 6 2 33.51 16.53
Participant 2 4 41.96 5 4 26.54 23.94
Participant 3 5 46.6 6 5 1.18 5.6
Participant 4 7 29.98 6 2 31.44 2.92
Participant 5 6 15.46 7 5 23.75 10.98
Participant 6 5 13.42 6 1 23.2 3.2
Participant 7 7 13.99 7 0 41.6 0.48
Participant 8 5 42.13 5 3 21.26 18.86
Participant 9 7 34.39 7 2 23.97 2.95
Participant 10 5 90.89 6 0 51.64 2.72
Participant 11 5 33.88 5 4 11.89 31.77

Table 5.2 Distribution of Fixation Time across Participants.

The table shows that two participants used flowcharts extensively (Subjects 3 and 5).

Out of the total participants, five made use of flowcharts in five different comprehension

tasks. Three others referred to flowcharts in either four or three tasks.
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Four participants used them only once or twice, while two did not refer to the flowcharts

at all. In total, flowcharts were utilized in 28 out of 66 comprehension tasks.

5.2.2 Response Time, Correctness and Cognitive Load Results

Table 5.3 presents the results related to correctness, response time, and cognitive load

for each algorithm under two different task conditions: using code alone and using code

accompanied by a flowchart. For the last condition, the analysis includes only the 28

instances in which participants actively engaged with the flowchart. It is also important

to note that the number of responses per algorithm varies, as participants were not

necessarily exposed to the same set of algorithms.

Code Alone Code with Flowcharts

Algorithm
Total
Respon
ses

Correctn
ess
in %

Mean
Respon
se Time
(s)

Cog.
Load

Total
Respo
nses

Correctness
in %

Mean
Response
Time (s)

Cog.
Load

binarySearch 2 1 130.35 3.11 0 0 0

bubbleSort 6 0.67 82.55 3.71 2 1 71.06 3.29

concatlists 4 0.75 34.47 3.53 2 0.5 84.35 3.13

countEvenNumbers 4 0.75 23.86 2.2 2 0.5 39.07 1.75

crosssum 6 0.5 57.73 3.7 0 0 0

decimalToBinary 5 0.8 62.57 3.37 2 0 86.96 3.15

dropNumber 5 0.8 87.05 4.08 0 0 0

findTheLargest 1 1 39.17 5 1 37.32 1.4

firstAboveThreshold 5 1 53.68 2.17 4 0.75 89.42 3.62

hindex 5 0.8 98.22 2.57 4 0.25 95.68 1.1

integertoString 4 0.5 107.66 4.14 1 1 97.04 3.24

isPrime 7 0.71 32.57 3.21 4 1 48.25 4.3

power 5 0.6 44.91 3.08 2 1 79.01 3.96
removeDoubleChara
cters 4 0.5 104.59 2.68 0 0 0

MEAN_TOTAL 63 0.71 66.41 3.3 28 0.71 69.21 2.94
Table 5.3 Correctness, Response Time and Cognitive Load Results

Participants completed comprehension tasks with code alone in 10.00 - 154.74 s

(mean=66.41s) and comprehension tasks with flowcharts in 13.99 - 161.22

(mean=69.21s). This represents an increase of 2.8 s (4.22%) in the mean response

time when flowcharts were present. Furthermore, the median for tasks with code alone

is approximately between 45 and 50 seconds and for tasks with flowcharts is

approximately between 65 and 70 seconds. The results for the range of response times

are shown in Figure 5.1 below.
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Figure 5.1 Time Response Distributions.

The accuracy rate for the comprehension tasks was 0.71 (71%) in the code alone

condition and 0.71 (71%) when flowcharts were used. However, it is important to note

that the latter calculation is based on fewer observations, as flowcharts were not used

in every comprehension task where they were available. As illustrated in Figure 5.2

participants’ correctness varied significantly across algorithm types. The results show

that the correction rate for comprehension tasks was higher in 4 out of 14 algorithms

when flowcharts were used, lower in 9 algorithms, and equal in 1 algorithm.

Figure 5.2 Task Accuracy Across Different Algorithms.

The cognitive load results are presented in Figure 5.3, using boxplots to show the

distribution of cognitive load values. The boxplots compare the cognitive load during

comprehension tasks involving code snippets alone with those involving flowcharts.
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Cognitive load was measured using EEG signal analysis, specifically the ratio of the

relative power of the theta and alpha bands. The mean cognitive load for

comprehension tasks with code snippets alone is 3.3 and with code snippets in addition

to flowcharts is 2.94.

Figure 5.3 Cognitive Load Distributions.

5.2.3 Post Interview Results

As described in the methodology, a post-interview questionnaire was conducted after

participants completed the comprehension tasks. The responses collected at this stage

provide an insight into the participants' subjective preferences regarding the use of

flowcharts along with code snippets. The data from the post-questionnaire will be used

to evaluate the fifth hypothesis:

1. Please indicate the tasks where you found the use of flowcharts to be helpful

and those where it is not. Participants provided varied feedback regarding the

usefulness of flowcharts across different algorithmic tasks. While some found

flowcharts beneficial for understanding complex logic structures, others either ignored

them entirely or found them unnecessary for simple tasks. Flowcharts were particularly

helpful in tasks involving nested loops and conditional structures, such as

FindTheLargest, where participants reported that the flowchart was easier to follow

than the code, allowing them to track the algorithm’s flow more intuitively. Similarly, in

Crosssum, flowcharts assisted in visualizing the step-by-step summation process, and

in integerToString, they aided in comprehending the sequence of operations. Decision-
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making tasks also benefited from the presence of flowcharts, such as BinarySearch,

where some participants relied on them for condition verification, and

DecimalToBinary, where they provided a structured breakdown of the conversion

process. On the other hand, several tasks did not significantly benefit from the

presence of flowcharts. Some participants ignored the flowchart for BinarySearch

because they already recognized the structure from prior knowledge. In H-index, the

flowchart was deemed unhelpful in understanding the logic, and in Power Algorithm,

participants found the code easier to interpret compared to the flowchart.

Array-based operations such as RemoveDoubleCharacters also did not see significant

engagement with the flowchart, as participants felt that reading the code was sufficient.

Additionally, some participants expressed discomfort with using flowcharts, noting that

learning to reference them mid-experiment slowed them down, while others preferred

working solely with code due to familiarity with textual representations.

2. Could you describe the approach or strategy you used to solve the tasks?

Most participants initially focused on understanding the code using the top-down

approach and only referred to the flowchart when they encountered difficulties or

needed confirmation. This is consistent with previous research suggesting that novices

tend to rely on textual representations by default. Two participants reported switching

between the code and the flowchart, particularly when the code was long or unfamiliar.

Additionally, one participant highlighted that flowcharts were especially beneficial for

understanding the flow of algorithms, particularly in tasks involving loops and

conditional structures. They noted that, in certain cases, the flowchart offered more

clarity than the code itself due to its structured layout, which was especially helpful

when memorization was challenging.

3. How much did you refer to the flowcharts and how much to the code?

Participants were asked to indicate how often they referred to flowcharts versus code.

The responses showed a wide range of preferences. Three participants indicated that

they did not refer to the flowchart at all, while four participants indicated a stronger

preference for using flowcharts over code snippets. In addition, six participants

indicated that they primarily relied on code, but occasionally used flowcharts. On

average, flowcharts were referenced in approximately 30-40% of tasks.
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4. For which task did you spend more time on, when was there a flowchart

present or not? Most participants reported spending more time on tasks when a

flowchart was present because they had to process two different representations

simultaneously. Two participants reported that flowcharts helped them save time,

particularly on complex tasks involving nested loops and conditions. A further two

participants saw no significant difference in time taken with or without a flowchart. In

addition, five participants reported that they spent more time on certain tasks, such as

IntegerToString, but attributed this to the complexity of the algorithm rather than the

presence of the flowchart. For tasks involving loops, participants found that the extra

time spent was unrelated to the use of flowcharts.

5. Please choose on a scale from 1 to 5, did the presence of flowcharts in the

task impact your understanding of the source code? Participants rated the impact

of flowcharts on their understanding of source code using a five-point Likert scale. The

responses revealed a mixed perception of the usefulness of flowcharts. Three

participants found flowcharts unhelpful, while five found them somewhat helpful. Two

found them helpful, and one found them very helpful. Notably, no participant rated

flowcharts as extremely helpful.

6. If flowcharts were not provided in the tasks, would you have preferred their

inclusion to aid task-solving? Participants were also asked whether they would

have preferred flowcharts if they had not been included in the tasks. The responses

show a variety of preferences. Two participants strongly agreed, stating that flowcharts

would have been very helpful in aiding understanding, especially for long tasks and

those involving loops. Six participants somewhat agreed, acknowledging that

flowcharts could clarify code structure and flow, particularly for visual learners, but were

not essential. Three participants remained neutral, stating that flowcharts were useful

in some cases, but not consistently helpful in all tasks.

7. Did you use flowcharts as a learning tool in your introductory programming

classes? The responses indicated that only one participant had encountered

flowcharts in all introductory courses, while another had used them in several, but not

all, courses. Two participants reported using flowcharts in only one course, while the

majority stated that flowcharts were not part of their programming education.
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5.3 Hypotheses Testing

Once the data have been summarized, significance tests are carried out to determine

whether the observed differences in the dependent variable are statistically significant.

These tests assess whether variations in the independent variable (e.g. the presence

or absence of a flowchart with the code snippet) have a measurable effect on the

dependent variables. Since differences can occur due to random variation, significance

tests help to assess whether the observed results are meaningful.

The null hypothesis assumes that there is no meaningful difference in the dependent

variable across experimental conditions, whereas the alternative hypothesis (H₁)

suggests the presence of a statistically significant difference. When the calculated p-

value representing the probability of observing the data under the null hypothesis falls

below the standard significance level of 5%, the null hypothesis is rejected. This

indicates that the observed difference is unlikely to have occurred by chance.

Conversely, if the p-value exceeds this threshold, the null hypothesis cannot be

rejected, implying that any differences may be due to random variation rather than a

true effect [125]. To evaluate the data, paired t-tests were applied for normally

distributed variables, such as fixation time. For data that did not meet normality

assumptions, non-parametric Wilcoxon signed-rank tests were employed. A

significance level of p < 0.05 was used for all statistical tests.

Ho1: Participants do not refer to flowcharts in addition to code snippets.

Eye-tracking data showed that participants spent an average of 10.08 seconds fixating

on flowcharts, which accounted for 27.16% of the total fixation time when both code

and flowcharts were present. To determine whether participants were actively

referencing flowcharts, a paired t-test was conducted comparing fixation time on code

alone to fixation time on flowcharts. Therefore, it calculates the difference between the

paired values (Fixation time on code when a flowchart was present and Fixation time

on flowcharts) for each participant, then computes the mean difference and its

standard deviation. The resulting p-value (0.0015) was significantly less than 0.05,

indicating a statistically significant difference in fixation times. Therefore, the null

hypothesis is rejected, leading to the conclusion that participants referred to flowcharts

in addition to code snippets. This finding confirms that flowcharts were actively used
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as a visual aid during the comprehension tasks, although they received less fixation

time compared to code snippets.

Ho2: There is no significant difference in response time of comprehension

tasks due to the use of flowcharts.

The analysis of response times indicates that participants took an average of 66.41

seconds to complete comprehension tasks with code snippets alone, compared to

69.21 seconds when flowcharts were included. This represents a 4.22% increase in

mean response time when flowcharts were introduced. The Shapiro-Wilk test was

used to determine whether the response times results followed a normal distribution.

As the data were not normally distributed, a non-parametric test, the rank sum test,

was chosen for analysis. The rank sum test was used to compare the response times

between the code alone condition and the code with flowchart condition. The test

yielded a p-value of 0.4389, which is greater than 0.05. This means that there is no

statistically significant difference in response times between the two conditions. As a

result, the null hypothesis Ho2 is accepted as this difference is not statistically

significant. Therefore, the results suggest that the inclusion of flowcharts does not have

a significant effect on the time taken to complete comprehension tasks.

Ho3: There is no significant difference in correctness of comprehension tasks

due to the use of flowcharts.

The correctness analysis shows that participants achieved a correctness rate of 71%

when solving comprehension tasks using code snippets alone and 71% when using

flowcharts. This suggests that the correctness rate remained the same regardless of

the presence of flowcharts. A chi-squared test was performed to determine whether

this difference was statistically significant. The test compared correctness rates

between comprehension tasks performed with code snippets alone and those

performed with flowcharts. The results yielded a Chi-squared statistic of 0.0 and a p-

value of 1.0. Therefore, the null hypothesis H₀₃ is accepted. Furthermore, the effect

size Phi = 0.0 suggests that the inclusion of flowcharts has no measurable effect on

correctness. Therefore, the results of this study do not support the claim that flowcharts

improve correctness in comprehension tasks.
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Ho4: There is no significant difference in cognitive load during comprehension

tasks due to the use of flowcharts.

The Shapiro-Wilk test was carried out for both conditions. The test gave a p-value of

0.0728 for the code alone condition and a p-value of 0.0747 for the code with flowchart

condition. As both p-values are greater than 0.05, this confirms that the data are

normally distributed. The t-test was performed to determine if there was a significant

difference in cognitive load between the code alone and code with flowchart conditions.

The test yielded a p-value of 0.5209, which is greater than the 0.05 significance level.

Therefore, the null hypothesis H₀₄ is accepted. This suggests that the use of flowcharts

has no significant effect on reducing or increasing cognitive load during comprehension

tasks.

Ho5: Participants do not prefer flowcharts in addition to code snippets.

The responses showed that 8 out of 11 participants (72.7%) stated a preference for

flowcharts, indicating that most participants found them beneficial in aiding

comprehension and problem-solving. Based on this majority preference, The null

hypothesis H₀₅ is rejected.

5.4 Answer to Research Question

The research question, as outlined in the methodology section, is as follows:

RQ: Can the impact of flowcharts on novices' program comprehension be verified in a

replication study under similar experimental conditions?

The results of this replication study indicate that the impact of flowcharts on novice

program comprehension could not be fully verified under conditions similar to those of

the original study but was only partially confirmed. The results are consistent with the

original study in that participants referred to flowcharts in addition to code snippets, as

confirmed by the visual attention analysis. In addition, the difference in cognitive load

during comprehension tasks due to the use of flowcharts was not statistically

significant, although it was slightly lower when flowcharts were presented alongside

code snippets. Furthermore, participants' preference for flowcharts over code snippets



76

was confirmed. However, the integration of flowcharts into the comprehension process

did not lead to an improvement in correctness rates, and response time did not

increase significantly when flowcharts were used.
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6 Discussion

This chapter presents the interpretation of the study results, considering both

confirmed and rejected statistical hypotheses. The following subsections discuss visual

attention, response time, correctness, and cognitive load in relation to the research

question: What is the impact of flowcharts on novice code comprehension? Finally, the

potential threats to construct, internal, and external validity are addressed.

6.1 Visual Attention

The hypothesis relating to this measurement factor was formulated in the methodology

section as follows:

H1. Participants refer to flowcharts in addition to code snippets.

The results of the visual attention data show that participants actively referred to the

flowcharts during the comprehension tasks and the difference in response time when

flowcharts were presented was significant. Flowcharts were actively used in 28 out of

66 comprehension tasks, with an average fixation time of 10.08 seconds, which

accounted for 27.16% of the total fixation time when flowcharts were present alongside

code snippets. Notably, participants spent less time fixating on code snippets in these

cases, suggesting that novices tend to seek alternative resources beyond textual code

when attempting to understand algorithms. However, the flowchart representing the

crosssum and removeDoubleCharacters algorithms was not used extensively. This

behavior is consistent with existing research and the original study, which links reliance

on additional visual aids with a lack of comprehension and problem-solving skills.

When faced with difficulties interpreting algorithms in a programming language,

novices seek external aids that provide additional context. The results of this study

suggest that flowcharts are a practical approach to support, particularly when code

comprehension proves challenging. In addition, feedback from participants confirmed

the usefulness of flowcharts for understanding the flow of a program. Several

participants noted that the flowcharts supported their ability to visualize how the

algorithm executes, particularly in cases involving complex, lengthy, or unfamiliar code.

The structured presentation of the flow allowed for a clearer breakdown of iterative
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calculations and logical steps, making it easier to follow the progress and behavior of

some algorithms.

Eye-tracking data further revealed that two participants did not engage with the

flowcharts at all. One possible explanation is that interpreting a new visual format of

algorithmic content may have been too cognitively demanding or time-consuming for

them, prompting a preference for the textual code. Alternatively, this behavior may

reflect individual learning styles particularly the distinction between visual and verbal

learners. While visual learners tend to favor diagrams, flowcharts, timelines, and

interactive elements, verbal learners may be more comfortable processing information

through text. Verbal learners retain and process information more effectively through

reading and textual explanations. It may be that the participants who did not refer to

flowcharts were verbal learners who found textual representations more appropriate

for their understanding. In addition, they may have been unwilling to engage with an

unfamiliar tool, preferring a representation with which they were more familiar.

Another possible reason for the lack of use of flowcharts is the simplicity of the task

and the complexity of the algorithm. If the algorithms were relatively simple,

participants may have felt that they did not need the additional support of flowcharts.

The original study suggests that when the complexity of the algorithm is low, textual

representations may be sufficient, reducing the need to refer to flowcharts. This

suggests that individual learning preferences, familiarity with visual aids and the

complexity of the task all play a crucial role in determining whether flowcharts are used

as an aid to comprehension.

An analysis of the eye-tracking data in this replication study identified four distinct

patterns of flowchart use, extending the three patterns originally defined. While Pattern

1 (Balanced Usage), Pattern 2 (Code-Dominant) and Pattern 3 (Flowchart-Dominant)

were consistent with the original findings, a fourth pattern emerged, indicating a unique

behavioral shift in some participants.

Pattern 1: Balanced Usage, participants alternated between the code snippet and the

flowchart, using both representations to construct their understanding. This pattern

suggests that the flowchart served as secondary aid rather than a primary source of
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understanding. Participants exhibiting this behavior were likely to refer to the flowchart

when they had difficulty understanding the algorithm.

Pattern 2: Code-Dominant, participants spent most of their fixation time on the code

snippet, occasionally glancing at the flowchart for confirmation or clarification. This

behavior is characteristic of individuals who are more comfortable with textual

representations and who use flowcharts as a supplementary tool rather than a

necessity. Alternatively, participants following this pattern may have already formed a

potential answer to the comprehension task and were only looking at the flowchart to

verify or confirm their hypothesis.

Pattern 3: Flowchart dominant, participants focused primarily on the flowchart and only

occasionally looked at the code snippet. This suggests that for these individuals the

flowchart was the primary resource for understanding, with the code snippet playing a

minimal role. This pattern suggests that flowcharts may provide a more efficient

approach for some participants, allowing them to solve tasks effectively with some

fixation on the code.

Pattern 4: Flowchart Exclusive Usage, a novel pattern unique to this replication study,

where some participants relied entirely on the flowchart and completely ignored the

code snippet. Several factors could explain this behavior: Task complexity, If the

flowchart provided sufficient clarity, participants may not have felt the need to refer to

the code; Strong visual learning preference. Some participants may have been highly

visual learners who found flowcharts easier to interpret; Fatigue or order effects, when

tasks appeared later in the experiment, participants may have defaulted to using

flowcharts as a faster alternative to processing code. Heatmaps of some of the

comprehension tasks are shown in Table 6.1
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Table 6.1 Usage Patterns of Flowcharts.

Pattern1

Pattern2

Pattern 3

Pattern 4
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6.2 Response Time

The hypothesis corresponding to this measurement factor was defined in the

methodology section as follows:

H2: Participants using flowcharts take less time to complete the tasks.

Response time analysis showed that participants took an average of 66.41 seconds to

complete comprehension tasks using code snippets alone, whereas the presence of

flowcharts resulted in an average response time of 69.21 seconds, an increase of

4.22%. However, statistical tests confirmed that this difference was not statistically

significant. These results contrast with those of the original study, where the difference

in response time between code snippets alone and code with flowcharts was found to

be statistically significant, with participants taking 34.26% more time when using

flowcharts. However, in this replication study, the results suggest that students did not

take significantly longer when the flowchart was presented alongside the code; rather,

for some tasks, the flowchart was simply ignored. In particular, the mean response

time for four algorithms (e.g. binarySearch, crosssum, dropNumber and

removeDoubleCharacters) was recorded as zero, indicating that participants did not

engage with the flowcharts in these tasks. Some students expressed a preference for

relying solely on the code, citing discomfort with using a new tool, while others reported

that once they became familiar with the flowcharts, they found them useful. As noted

in the visual attention analysis, some students relied solely on the flowchart

representation and ignored the code altogether, which may explain why the response

time differences between comprehension tasks using code snippets alone and

comprehension tasks using flowcharts were not significant.

In the original study, novice programmers may have initiated two parallel

comprehension processes when presented with both code snippets and flowcharts. In

such cases, they attempted to follow the flow of the algorithm in both representations,

switching between them when they encountered difficulties or needed additional

clarity. This process allowed them to simultaneously check their answers against the

alternative representation. Still, the additional time novice programmers spend

engaging with flowcharts alongside code snippets may be worthwhile if it contributes

to the formation of more accurate mental models, thereby enhancing their overall
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understanding. That said, the extent to which this visual aid is utilized can vary

significantly based on individual preferences and prior experience, some may rely on

it heavily, while others may choose to disregard it entirely.

6.3 Correctness

The hypothesis corresponding to this measurement variable was stated in the

methodology section as follows:

H3: Participants using flowcharts answer with a higher correction rate.

The results of the replication study show that the correctness rate for the

comprehension tasks was 0.71 (71%) in both conditions, code alone and code with

flowcharts. A chi-squared test confirmed that there was no statistically significant

difference in correctness between the two conditions, suggesting that the presence of

flowcharts had no measurable effect on participants' accuracy in completing the tasks.

This finding contrasts with the original study, where the use of flowcharts resulted in a

significant improvement in correctness, from 50% with code snippets alone to 68%

when flowcharts were used, an improvement of 18%. One possible explanation for this

discrepancy is the way in which the participants interacted with the flowcharts. In the

original study, participants reported that flowcharts facilitated program comprehension

by clarifying algorithmic flow, particularly in selection and iteration structures. In

addition, participants in the original study used flowcharts as a verification tool, allowing

them to refine their understanding before submitting their responses. This iterative

process may have contributed to the significant improvement in accuracy.

In contrast, the replication study suggests that while some participants may have

benefited from flowcharts, others may have ignored them completely, as mentioned in

the discussion of response times above. Furthermore, while certain tasks (e.g., power,

isPrime, integertoString, findTheLargest, bubbleSort) were always answered correctly,

their accuracy rates were not statistically significant. Even when participants used

flowcharts, they were not necessarily effective in helping them find or confirm the

correct answer. Table 5.3 Correctness, Response Time and Cognitive Load Results

shows that the correctness rate for solving certain tasks (e.g., binarySearch, crosssum,

decimalToBinary, dropNumber, removeDoubleCharacters) using flowcharts was 0%.
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This suggests that the flowcharts were not seen as an aid to understanding

comprehension tasks in this study.

These findings suggest that the presence of flowcharts does not necessarily improve

accuracy unless participants actively engage with them in a structured way. The

divergence from the original study may be due to differences in participants' familiarity

with flowcharts, cognitive strategies or task complexity. While flowcharts provide an

additional layer of information, their effectiveness appears to depend not only on their

availability, but also on how they are used and whether participants choose to use

them as a support tool. This highlights the need for further research to identify the

conditions under which flowcharts are most beneficial for novice programmers in

comprehension tasks.

6.4 Cognitive Load

The hypothesis associated with this measurement factor was established in the

methodology as follows:

H4: Participants using flowcharts have a lower cognitive load when completing the

tasks.

The cognitive load analysis in this study shows that participants had a mean cognitive

load of 3.3 when using code snippets alone and 2.94 when using flowcharts in the

comprehension tasks. Although the cognitive load appeared to be slightly lower when

flowcharts were present, statistical analysis confirmed that this difference was not

significant. This is consistent with the original study, which also found no significant

increase in cognitive load when flowcharts were introduced. The presence of visual

aids may raise concerns that they may increase cognitive load. An important

observation is that participants referred to flowcharts when they had difficulty

understanding an algorithm or a long algorithm. This suggests that novices were able

to use flowcharts strategically to aid their understanding without incurring additional

cognitive load. Furthermore, despite their initial unfamiliarity with flowcharts,

participants learned how to interpret them through the instructions in the introduction

to the experiment. The original study highlighted the low learning curve of flowcharts,

making them an effective tool for novice programmers. The results of this study support
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this perspective, demonstrating that flowcharts provide an intuitive means of

understanding algorithmic flow without imposing a significant cognitive load.

6.5 Flowchart Preferences

The hypothesis pertaining to this measurement factor was defined in the methodology

as follows:

H5: Participants prefer to use flowcharts in addition to code.

The results of the post-interview responses indicate that the majority of participants

preferred to use flowcharts in addition to code snippets, which is consistent with the

results of the original study. In the original study, 7 out of 11 participants expressed a

preference for flowcharts, whereas in this study, 8 out of 11 participants favored their

inclusion. This consistency suggests that novice programmers tend to prefer visual

aids. However, while the overall preference remained similar, the extent to which

participants engaged with flowcharts differed between the two studies.

In the original study, participants not only expressed a preference for flowcharts, but

also demonstrated a higher rate of accuracy when using them. They also reported that

flowcharts helped them solve comprehension tasks faster by reducing ambiguity and

allowing them to check their answers. In this replication study, although most

participants expressed a preference for flowcharts, their actual use varied, with some

relying on them heavily and others choosing to ignore them entirely. Where several

participants stated that the additional presentation did not necessarily improve their

efficiency, and in some cases, it increased their reaction time as they processed two

different forms of the algorithm. In addition, one participant mentioned that it was

difficult to work with an unfamiliar tool. A key difference between the two studies is that

in the original study the flowcharts appeared to play a more central role in

understanding, whereas in the replication study few participants actively used the

flowcharts to understand the algorithm better, while others preferred to have the

flowcharts alongside the code to check their answers. Overall, these findings confirm

that flowcharts are generally preferred as an aid to understanding, but their

effectiveness varies depending on individual problem-solving strategies and task

complexity. In addition, participants in this study suggested that flowcharts should be
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included as a learning tool in introductory programming courses to help other students

understand code more effectively, and that they would have liked to have had the

opportunity to use them in their previous programming courses.

6.6 Threads to Validity

Threats to validity refer to potential problems or biases that arise during data collection,

processing, or analysis that may affect the accuracy and credibility of the study's

conclusions. These threats are often influenced by factors related to the experimental

environment, participant variability, measurement techniques, or external conditions

that may confound the intended results.

6.6.1 Construct Validity

Construct validity refers to the extent to which the study accurately measures the

concept it seeks to investigate [112]. In this study, several factors posed potential

threats to construct validity, including distortion of the EEG signal, guesswork based

on response time, and hypothesis guessing. During EEG data processing, some

signals were distorted due to the high sensitivity of EEG signals to noise and

interference from other physiological electrical signals, such as heartbeat activity. In

addition, participants' movements during the experiment introduced signal artefacts

that affected the accuracy of the data. To minimize these distortions, signal processing

filters were applied during data analysis; however, the removal of unwanted artefacts

also resulted in some signal loss, potentially affecting the measurement of cognitive

load [132]. Independent Component Analysis (ICA), recognized as one of the most

effective methods for cleaning EEG signals, was applied to improve signal validity and

increase the reliability of cognitive load measures [131].

Another threat to construct validity arises from the possibility that short response times

may not always reflect accurate understanding, but rather guesswork. To address this

issue, participants were given the option to skip tasks if they were uncertain, thus

reducing the likelihood of random responses. In addition, a minimum response time

threshold and eye fixation duration analysis were used to verify that participants were

actively engaged with the flowchart or code before responding. These measures

ensured that only meaningful responses contributed to the study results, thereby
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reducing the risk of response bias due to guessing. Furthermore, hypothesis guessing

poses a social threat to construct validity, as participants may attempt to infer the

purpose of the study and adjust their responses accordingly [112]. To mitigate this,

participants were explicitly informed that they could skip a question if they were unsure,

thus reducing the likelihood of biased responses due to guessing. However, this

instruction may have led participants to perceive the study not as an assessment of

their programming skills, but rather as an assessment of the impact of flowcharts on

code comprehension.

As a result, some participants may have consciously or unconsciously aligned their

responses with their assumptions about the study's hypothesis, either positively or

negatively. To address this concern, the first question in the post-experiment interview

was designed to assess where participants found the flowcharts useful and where they

did not. Participants were shown all the flowchart tasks they had completed and asked

to give reasons for their choices. This approach provided a deeper insight into their

cognitive processes and helped to identify potential biases introduced by hypothesis

guessing.

6.6.2 Internal Validity

Internal validity refers to whether the observed effects in the study are really caused

by the independent variable (i.e., the flowchart) or whether they are caused by

confounding factors [112]. A potential threat to internal validity is stress caused by

external factors, such as exam periods or personal pressures, that affect participants'

cognitive performance. To minimize this risk, the study was not conducted during exam

periods, but rather before or after to avoid this effect. In addition, participants were

allowed to choose a convenient time to take part, ensuring that they were able to

complete the study without external pressure.

Another factor that could have affected the results is fatigue. Some participants had

long and thick hair, which increased the time it took to set up the EEG and, in some

cases, led to boredom. Unfortunately, this cannot be controlled experimentally. In

addition, the motivation of the participants may have influenced the results. As all

participants were volunteers, they were likely to be more motivated and engaged than

a sample of the general population [112].
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Volunteers tend to be more interested, which may lead to better task performance

compared to a less intrinsically motivated group. In the literature, some students are

identified as textual learners, while others rely more on visual aids and are classified

as visual learners. These differences introduce variations in cognitive strategies that

could influence the results of the study. Future research could explore participants'

preferred learning styles (visual vs. textual) and analyze whether the effectiveness of

flowcharts varies based on these preferences.

6.6.3 External Validity

External validity refers to the extent to which the findings of a study can be generalized

beyond the specific conditions of the experiment, such as different populations,

settings, and time frames [112]. All participants were novice students from the same

university. While this controlled for within-group variability, reducing potential bias, it

also limits the generalizability of the findings to other populations, such as professional

programmers or novice learners from different educational backgrounds [112].

Another limitation is the nature of the programming tasks. Participants were asked to

solve short code snippets, which are consistent with introductory programming

courses. However, real-world programming environments, particularly in industry,

often involve longer, more complex code bases. This discrepancy raises concerns

about whether the effectiveness of flowchart observed in this study would hold up in

practical, large-scale software development contexts.

Furthermore, as highlighted in the original study, the experiment, such as this study,

was conducted exclusively in the Java programming language. However, as the code

snippets used in this study were not highly complex, it is unlikely that changing the

programming language would have had a significant impact on comprehension.
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7 Conclusion

Research has consistently shown that novice programmers often struggle to develop

the mental models necessary for effectively understanding programs and solving

problems [13]. They encounter considerable difficulties in grasping the flow, structure

and purpose of algorithms, hindering their ability to translate problem specifications

into working code. Motivated by these challenges, the present study aimed to replicate

and extend prior research investigating the impact of algorithmic visualizations

specifically flowcharts on novice program comprehension.

This controlled replication study employed eye tracking, EEG monitoring and

structured interviews to gain multifaceted insights into the cognitive processes

involved. Novices were asked to complete comprehension tasks with code snippets

alone or with code snippets accompanied by flowcharts. Metrics such as fixation time,

cognitive load, response time, accuracy, and subjective preference were

systematically evaluated.

The results of the present study are partly consistent with the original findings [24]. In

both studies, participants actively used flowcharts during comprehension tasks, as

confirmed by eye-tracking data. Participants also consistently expressed a subjective

preference for the inclusion of flowcharts, indicating that they perceived them as

beneficial aids in understanding program logic. However, while the original study

reported a statistically significant improvement in accuracy with flowcharts, this

replication found no statistically significant difference in accuracy rates between

conditions.

Similarly, response time did not differ significantly across the two conditions in this

replication, whereas the original study found that using flowcharts significantly

increased response time.

Notably, no significant effect on cognitive load was observed in either study. This

suggests that, although the participants positively received and used flowcharts during

the comprehension, they did not necessarily ease cognitive processing or speed up

task completion for novice programmers.
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Interestingly, despite the lack of improvements in correctness or response time in the

replication study, participants' preference for flowcharts indicates that they might

perceive them as a helpful scaffold, perhaps offering psychological comfort or reducing

the perceived complexity of the task.

The discrepancies between the original and replication results highlight several

important considerations. First, replication in software engineering research,

particularly studies involving human behavior, remains inherently challenging.

Variability in participant characteristics, sample size limitations, changes in

technological environments, and the inevitable loss of direct access to original

researchers complicate replication efforts [133].

This mirrors broader trends observed in the "replication crisis" across fields like

psychology and empirical software engineering, where even carefully conducted

replications often fail to reproduce original findings exactly [134].

Furthermore, this study encountered some technical challenges due to updates in

libraries and tools between 2022 and 2024/25. This illustrates the rapid pace of

technological change in software engineering environments. These factors, alongside

different participant demographics and a small sample size, may have contributed to

the observed variations.

In conclusion, although flowcharts do not lead to significant improvements in objective

measures of program comprehension, novice programmers nevertheless appreciate

them as valuable supportive tools. Integrating them into introductory programming

courses could enhance students' subjective learning experiences and perceived

confidence. However, they should not be viewed as a standalone solution, but rather

as one component of a broader pedagogical strategy.

Further research is necessary to better understand the true impact of flowcharts on

novice learners, and to validate their effectiveness in different educational contexts.

This should include more extensive replication studies.
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7.1 Future Work

Based on the findings and challenges encountered in this replication study, the

following avenues for future research are proposed:

• Investigate the effect of flowcharts on code comprehension at different levels of

complexity and among programmers with varying levels of experience.

• Comparative studies could examine the effectiveness of various visual aids,

such as pseudocode, UML diagrams and animated traces, compared with

traditional flowcharts.

• Expanded sample sizes and diversity, by involving students from different

universities and educational backgrounds, would increase the generalizability

of results and enhance consistency, reproducibility, and transparency across

empirical studies.

• Expert versus novice comparisons could provide valuable insights into how

visualization tools are used differently across experience levels.

• Involving students from different universities and educational backgrounds

would expand the sample size and diversity, making the results more

generalizable and enhancing the consistency, reproducibility and transparency

of empirical studies.

• Incorporate a wider range of tools and methodologies for measuring program

comprehension, such as functional magnetic resonance imaging (fMRI), recall

tasks, think-aloud protocols, and debugging exercises.

• Controlled intervention studies could be conducted by designing two separate

courses: one in which flowcharts are systematically integrated into the

curriculum, and another in which flowcharts are not used. This approach would

allow researchers to observe and compare the long-term academic outcomes

between the two groups.

Addressing these areas systematically will enable future research to determine the role

of algorithmic visualizations in novice programming education more effectively. This

will contribute to the evidence-based enhancement of computer science pedagogy.



91

Bibliography

[1] B. Boehm, “A view of 20th and 21st century software engineering,” in Proceedings
of the 28th international conference on Software engineering, Shanghai China:
ACM, May 2006, pp. 12–29. doi: 10.1145/1134285.1134288.

[2] R. Brooks, “Towards a theory of the comprehension of computer programs,” Int. J.
Man-Mach. Stud., vol. 18, no. 6, pp. 543–554, 1983, Accessed: Apr. 21, 2025.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020737383800315

[3] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in programmer
behavior: A model and experimental results,” Int. J. Comput. Inf. Sci., vol. 8, no. 3,
pp. 219–238, Jun. 1979, doi: 10.1007/BF00977789.

[4] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognit. Psychol., vol. 19, no. 3, pp. 295–
341, Jul. 1987, doi: 10.1016/0010-0285(87)90007-7.

[5] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework,” J. Vis. Lang. Comput., vol. 7,
no. 2, pp. 131–174, 1996, Accessed: Apr. 21, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900099

[6] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs:
an empirical study,” Commun. ACM, vol. 26, no. 11, pp. 853–860, Nov. 1983, doi:
10.1145/182.358436.

[7] T. A. Standish, “An essay on software reuse,” IEEE Trans. Softw. Eng., no. 5, pp.
494–497, 1984, Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/5010272/

[8] J. Siegmund, “Program comprehension: Past, present, and future,” in 2016 IEEE
23rd international conference on software analysis, evolution, and reengineering
(SANER), IEEE, 2016, pp. 13–20. Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7476769/

[9] C. Areias and A. Mendes, “A tool to help students to develop programming skills,”
in Proceedings of the 2007 international conference on Computer systems and
technologies - CompSysTech ’07, Bulgaria: ACM Press, 2007, p. 1. doi:
10.1145/1330598.1330692.

[10] A. McGettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Lovegrove, and K. Mander,
“Grand challenges in computing: Education—a summary,” Comput. J., vol. 48, no.
1, pp. 42–48, 2005, Accessed: Apr. 21, 2025. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8140304/

[11] J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bull., vol. 39, no. 2, pp. 32–36, Jun. 2007, doi:
10.1145/1272848.1272879.

[12] J. Figueiredo and F. García-Peñalvo, “Teaching and learning tools for
introductory programming in university courses,” in 2021 International Symposium
on Computers in Education (SIIE), IEEE, 2021, pp. 1–6. Accessed: Apr. 21, 2025.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9583623/

[13] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the difficulties of
novice programmers,” ACM SIGCSE Bull., vol. 37, no. 3, pp. 14–18, Sep. 2005,
doi: 10.1145/1151954.1067453.



92

[14] Y.-F. Shih and S. M. Alessi, “Mental Models and Transfer of Learning in
Computer Programming,” J. Res. Comput. Educ., vol. 26, no. 2, pp. 154–175, Dec.
1993, doi: 10.1080/08886504.1993.10782084.

[15] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, A. Al‐Ghamdi, and F. Saleem, “The
effect of automatic assessment on novice programming: Strengths and limitations
of existing systems,” Comput. Appl. Eng. Educ., vol. 26, no. 6, pp. 2328–2341, Nov.
2018, doi: 10.1002/cae.21974.

[16] K. M. Yusoff, N. S. Ashaari, T. Wook, and N. M. Ali, “Analysis on the
requirements of computational thinking skills to overcome the difficulties in learning
programming,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 3, pp. 244–253, 2020,
Accessed: Apr. 21, 2025. [Online]. Available:
https://www.academia.edu/download/87004513/Paper_29-
Analysis_on_the_Requirements_of_Computational_Thinking_Skills.pdf

[17] O. Kurniawan, C. Jégourel, N. T. S. Lee, M. De Mari, and C. M. Poskitt, “Steps
Before Syntax: Helping Novice Programmers Solve Problems using the PCDIT
Framework,” presented at the Hawaii International Conference on System
Sciences, 2022. doi: 10.24251/HICSS.2022.121.

[18] S. Garner, “Reducing the Cognitive Load on Novice Programmers.,” Jun. 2002.
[Online]. Available: https://files.eric.ed.gov/fulltext/ED477013.pdf

[19] F. Schmidt, “Detecting and Correcting the Lies That Data Tell,” Perspect.
Psychol. Sci., vol. 5, no. 3, pp. 233–242, May 2010, doi:
10.1177/1745691610369339.

[20] M. E. Tudoreanu, “Designing effective program visualization tools for reducing
user’s cognitive effort,” in Proceedings of the 2003 ACM symposium on Software
visualization, San Diego California: ACM, Jun. 2003, p. 105. doi:
10.1145/774833.774848.

[21] C. Evans and N. J. Gibbons, “The interactivity effect in multimedia learning,”
Comput. Educ., vol. 49, no. 4, pp. 1147–1160, 2007, Accessed: Apr. 21, 2025.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131506000285

[22] A. E. Zimmermann, E. E. King, and D. D. Bose, “Effectiveness and Utility of
Flowcharts on Learning in a Classroom Setting: A Mixed-Methods Study,” Am. J.
Pharm. Educ., vol. 88, no. 1, p. 100591, Jan. 2024, doi:
10.1016/j.ajpe.2023.100591.

[23] R. Levy, M. Ben-Ari, and P. Uronen, “The Jeliot 2000 program animation
system,” Comput. Educ., vol. 40, pp. 1–15, Jan. 2003, doi: 10.1016/S0360-
1315(02)00076-3.

[24] “2022 Master - Effect of Flowcharts on Code Comprehension of Novice
Programmers.pdf.” Accessed: Apr. 21, 2025. [Online]. Available: https://www.tu-
chemnitz.de/informatik/ST/lectures/Masters%20Thesis%20Pdfs/2022%20Master
%20-
%20Effect%20of%20Flowcharts%20on%20Code%20Comprehension%20of%20
Novice%20Programmers.pdf

[25] E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,”
IEEE Trans. Softw. Eng., vol. SE-10, no. 5, pp. 595–609, Sep. 1984, doi:
10.1109/TSE.1984.5010283.

[26] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring Program
Comprehension: A Large-Scale Field Study with Professionals,” IEEE Trans.
Softw. Eng., vol. PP, pp. 1–1, Jul. 2017, doi: 10.1109/TSE.2017.2734091.



93

[27] Y. Cai, L. Xiao, R. Kazman, R. Mo, and Q. Feng, “Design Rule Spaces: A New
Model for Representing and Analyzing Software Architecture,” IEEE Trans. Softw.
Eng., vol. 45, no. 7, pp. 657–682, Jul. 2019, doi: 10.1109/TSE.2018.2797899.

[28] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics and
Biases: Biases in judgments reveal some heuristics of thinking under uncertainty.,”
Science, vol. 185, no. 4157, pp. 1124–1131, Sep. 1974, doi:
10.1126/science.185.4157.1124.

[29] E. Soloway, B. Adelson, and K. Ehrlich, “Knowledge and Processes in The
Comprehension of Computer Programs,” in The Nature of Expertise, Psychology
Press, 1988.

[30] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg, “Measuring
programming experience,” in 2012 20th IEEE International Conference on Program
Comprehension (ICPC), Passau, Germany: IEEE, Jun. 2012, pp. 73–82. doi:
10.1109/ICPC.2012.6240511.

[31] S. Wiedenbeck, “The initial stage of program comprehension,” Int. J. Man-Mach.
Stud., vol. 35, no. 4, pp. 517–540, Oct. 1991, doi: 10.1016/S0020-7373(05)80090-
2.

[32] J. Siegmund et al., “Measuring neural efficiency of program comprehension,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, Paderborn Germany: ACM, Aug. 2017, pp. 140–150. doi:
10.1145/3106237.3106268.

[33] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on
our Capacity for Processing Information[1]”.

[34] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models and
software maintenance,” J. Syst. Softw., vol. 7, no. 4, pp. 341–355, Dec. 1987, doi:
10.1016/0164-1212(87)90033-1.

[35] J. Koenemann and S. P. Robertson, “Expert problem-solving strategies for
program comprehension,” Proceedings of the SIGCHI conference on Human
factors in computing systems Reaching through technology - CHI '91, 1991.

[36] A. Dunsmore and M. Roper, “A Comparative Evaluation of Program
Comprehension Measures”.

[37] S. Tenny, J. M. Brannan, and G. D. Brannan, “Qualitative Study,” in StatPearls,
Treasure Island (FL): StatPearls Publishing, 2025. Accessed: Apr. 21, 2025.
[Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK470395/

[38] S. Kvale, InterViews : learning the craft of qualitative research interviewing. Los
Angeles : Sage Publications, 2009. Accessed: Apr. 21, 2025. [Online]. Available:
http://archive.org/details/interviewslearni0000kval

[39] B. DiCicco-Bloom and B. F. Crabtree, “The qualitative research interview,” Med.
Educ., vol. 40, no. 4, pp. 314–321, Apr. 2006, doi: 10.1111/j.1365-
2929.2006.02418.x.

[40] “Likert_1932.pdf.” Accessed: Apr. 22, 2025. [Online]. Available:
https://legacy.voteview.com/pdf/Likert_1932.pdf

[41] J. Feigenspan, S. Apel, J. Liebig, and C. Kastner, “Exploring Software Measures
to Assess Program Comprehension,” in 2011 International Symposium on
Empirical Software Engineering and Measurement, Banff, AB, Canada: IEEE, Sep.
2011, pp. 127–136. doi: 10.1109/ESEM.2011.21.

[42] R. J. Miara, J. A. Musselman, J. A. Navarro, and B. Shneiderman, “Program
indentation and comprehensibility,” Commun. ACM, vol. 26, no. 11, pp. 861–867,
Nov. 1983, doi: 10.1145/182.358437.

[43] M. A. Just, “A theory of reading: From eye ixations to comprehension”.



94

[44] K. Rayner, “Eye Movements in Reading and Information Processing: 20 Years
of Research”.

[45] A. T. Duchowski, Eye Tracking Methodology. Cham: Springer International
Publishing, 2017. doi: 10.1007/978-3-319-57883-5.

[46] J. Z. Lim, J. Mountstephens, and J. Teo, “Emotion Recognition Using Eye-
Tracking: Taxonomy, Review and Current Challenges,” Sensors, vol. 20, no. 8, p.
2384, Apr. 2020, doi: 10.3390/s20082384.

[47] B. Kitchenham, “Procedures for Performing Systematic Reviews”.
[48] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and A. Brechmann,

“Simultaneous measurement of program comprehension with fMRI and eye
tracking: a case study,” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, Oulu Finland:
ACM, Oct. 2018, pp. 1–10. doi: 10.1145/3239235.3240495.

[49] Y.-G. Guéhéneuc, “TAUPE: towards understanding program comprehension,”
in Proceedings of the 2006 conference of the Center for Advanced Studies on
Collaborative research - CASCON ’06, Toronto, Ontario, Canada: ACM Press,
2006, p. 1. doi: 10.1145/1188966.1188968.

[50] S. Yusuf, H. Kagdi, and J. I. Maletic, “Assessing the Comprehension of UML
Class Diagrams via Eye Tracking,” in 15th IEEE International Conference on
Program Comprehension (ICPC ’07), Banff, Alberta, BC: IEEE, Jun. 2007, pp. 113–
122. doi: 10.1109/ICPC.2007.10.

[51] M. E. Crosby and J. Stelovsky, “How do we read algorithms? A case study,”
Computer, vol. 23, no. 1, pp. 25–35, Jan. 1990, doi: 10.1109/2.48797.

[52] B. Sharif and J. Maletic, An Eye Tracking Study on camelCase and under_score
Identifier Styles. 2010, p. 205. doi: 10.1109/ICPC.2010.41.

[53] K. Park et al., “An eye tracking study assessing source code readability rules for
program comprehension,” Empir. Softw. Eng., vol. 29, no. 6, p. 160, Oct. 2024, doi:
10.1007/s10664-024-10532-x.

[54] J. Beatty and B. Lucero-Wagoner, “The pupillary system,” Oct. 2012.
[55] JACKSON BEATTY and DANIEL KAHNEMAN, “Pupillary changes In two

memory tasks,” Springer, pp. 371--372, 1966. [Online]. Available:
https://link.springer.com/content/pdf/10.3758/BF03328444.pdf

[56] E. H. Hess and J. M. Polt, “Pupil Size in Relation to Mental Activity during Simple
Problem-Solving,” Science, vol. 143, no. 3611, pp. 1190–1192, Mar. 1964, doi:
10.1126/science.143.3611.1190.

[57] M. Behroozi, S. Shirolkar, T. Barik, and C. Parnin, “Does stress impact technical
interview performance?,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event USA: ACM, Nov. 2020, pp. 481–492. doi:
10.1145/3368089.3409712.

[58] M. Doughty, “Consideration of Three Types of Spontaneous Eyeblink Activity in
Normal Humans: during Reading and Video Display Terminal Use, in Primary
Gaze, and while in Conversation,” Optom. Vis. Sci. Off. Publ. Am. Acad. Optom.,
vol. 78, pp. 712–25, Nov. 2001, doi: 10.1097/00006324-200110000-00011.

[59] “The biomedical engineering handbook. 1,” Boca Raton, Fla: CRC Press, 2000.
[60] D. L. Schomer and F. Lopes da Silva, Niedermeyer’s electroencephalography:

Basic principles, clinical applications, and related fields: Sixth edition. 2012, p.
1269.

[61] M. Teplan, “FUNDAMENTALS OF EEG MEASUREMENT,” Meas. Sci. Rev.,
vol. 2, 2002.



95

[62] “Hochdichte EEG-Hauben für Forscher,” BESDATA. Accessed: Apr. 22, 2025.
[Online]. Available: https://besdatatech.com/de/high-density-eeg-caps-for-
researchers/

[63] G. Buzsáki, Rhythms of the Brain. Oxford University Press, 2006. doi:
10.1093/acprof:oso/9780195301069.001.0001.

[64] R. Llinás and U. Ribary, “Coherent 40-Hz Oscillation Characterizes Dream State
in Humans,” Proc. Natl. Acad. Sci. U. S. A., vol. 90, pp. 2078–81, Apr. 1993, doi:
10.1073/pnas.90.5.2078.

[65] “Dry Electrode,” Wearable Sensing | Dry EEG. Accessed: Apr. 22, 2025.
[Online]. Available: https://wearablesensing.com/dry-electrode/

[66] S. J. Luck, An Introduction to the Event-Related Potential Technique, second
edition. MIT Press, 2014.

[67] E. Lattari et al., “Corticomuscular coherence behavior in fine motor control of
force: A critical review,” Rev. Neurol., vol. 51, pp. 610–23, Nov. 2010.

[68] S. Kanoga and Y. Mitsukura, “Review of Artifact Rejection Methods for
Electroencephalographic Systems,” 2017. doi: 10.5772/68023.

[69] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis,” Brain Res. Rev., vol. 29, no. 2–3, pp. 169–
195, Apr. 1999, doi: 10.1016/S0165-0173(98)00056-3.

[70] E. Soloway and J. C. Spohrer, Studying the novice programmer. Psychology
Press, 2013. Accessed: Apr. 21, 2025. [Online]. Available:
https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&i
dentifierValue=10.4324/9781315808321&type=googlepdf

[71] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching
Programming: A Review and Discussion,” Comput. Sci. Educ., vol. 13, no. 2, pp.
137–172, Jun. 2003, doi: 10.1076/csed.13.2.137.14200.

[72] L. E. Winslow, “Programming pedagogy—a psychological overview,” ACM
SIGCSE Bull., vol. 28, no. 3, pp. 17–22, Sep. 1996, doi: 10.1145/234867.234872.

[73] B. A. Sheil, “The Psychological Study of Programming,” ACM Comput. Surv.,
vol. 13, no. 1, pp. 101–120, Mar. 1981, doi: 10.1145/356835.356840.

[74] A. Lishinski, A. Yadav, R. Enbody, and J. Good, “The Influence of Problem
Solving Abilities on Students’ Performance on Different Assessment Tasks in CS1,”
in Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, Memphis Tennessee USA: ACM, Feb. 2016, pp. 329–334. doi:
10.1145/2839509.2844596.

[75] B. Mase and L. Nel, “Common Code Writing Errors Made by Novice
Programmers: Implications for the Teaching of Introductory Programming,” 2022,
pp. 102–117. doi: 10.1007/978-3-030-95003-3_7.

[76] R. Lister, “On the cognitive development of the novice programmer: and the
development of a computing education researcher,” in Proceedings of the 9th
Computer Science Education Research Conference, Virtual Event Netherlands:
ACM, Oct. 2020, pp. 1–15. doi: 10.1145/3442481.3442498.

[77] J. Sillito, G. Murphy, and K. Volder, “Asking and Answering Questions during a
Programming Change Task,” Softw. Eng. IEEE Trans. On, vol. 34, pp. 434–451,
Aug. 2008, doi: 10.1109/TSE.2008.26.

[78] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “The Role of
Experience and Ability in Comprehension Tasks Supported by UML Stereotypes,”
in 29th International Conference on Software Engineering (ICSE’07), Minneapolis,
MN: IEEE, May 2007, pp. 375–384. doi: 10.1109/ICSE.2007.86.



96

[79] M. M. Müller, “Are Reviews an Alternative to Pair Programming?,” Empir. Softw.
Eng., vol. 9, no. 4, pp. 335–351, Dec. 2004, doi:
10.1023/B:EMSE.0000039883.47173.39.

[80] S. Kleinschmager and S. Hanenberg, “How to rate programming skills in
programming experiments?: a preliminary, exploratory, study based on university
marks, pretests, and self-estimation”.

[81] C. Bunse, “Using patterns for the refinement and translationof UML models: A
controlled experiment,” Empir. Softw. Eng., vol. 11, no. 2, pp. 227–267, Jun. 2006,
doi: 10.1007/s10664-006-6403-7.

[82] S. Biffl and W. Grossmann, Evaluating the accuracy of defect estimation models
based on inspection data from two inspection cycles. 2001, p. 154. doi:
10.1109/ICSE.2001.919089.

[83] J. E. Hannay, E. Arisholm, H. Engvik, and D. I. K. Sjoberg, “Effects of Personality
on Pair Programming,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 61–80, Jan.
2010, doi: 10.1109/TSE.2009.41.

[84] N. Ensmenger, “The Multiple Meanings of a Flowchart”.
[85] M. d/o Muniandi, N. A. binti M. Saad, and J. d/o M. @ Manickam, “Students’

Perception on RAPTOR Application Implementation in Problem Solving and
Program Design,” Stud. Percept. RAPTOR Appl. Implement. Probl. Solving
Program Des., vol. 134, no. 1, Art. no. 1, Oct. 2023, Accessed: Apr. 21, 2025.
[Online]. Available: https://ijrp.org/paper-detail/5520

[86] B. Calloni and D. Bagert, ICONIC programming in BACCII vs. textual
programming: which is a better learning environment?, vol. 26. 1994, p. 192. doi:
10.1145/191033.191103.

[87] B. A. Calloni, D. J. Bagert, and H. P. Haiduk, “Iconic programming proves
effective for teaching the first year programming sequence,” ACM SIGCSE Bull.,
vol. 29, no. 1, pp. 262–266, Mar. 1997, doi: 10.1145/268085.268189.

[88] T. Crews and U. Ziegler, “The flowchart interpreter for introductory programming
courses,” in FIE ’98. 28th Annual Frontiers in Education Conference. Moving from
“Teacher-Centered” to “Learner-Centered” Education. Conference Proceedings
(Cat. No.98CH36214), Tempe, AZ, USA: IEEE, 1998, pp. 307–312. doi:
10.1109/FIE.1998.736854.

[89] T. Crews, “Using a Flowchart Simulator in a Introductory Programming Course”.
[90] T. Watts, “The SFC editor a graphical tool for algorithm development,” J Comput

Sci Coll, vol. 20, no. 2, pp. 73–85, Dec. 2004.
[91] M. C. Carlisle, “RAPTOR: A VISUAL PROGRAMMING ENVIRONMENT FOR

TEACHING OBJECT-ORIENTED PROGRAMMING”.
[92] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “Raptor:

introducing programming to non-majors with flowcharts,” J. Comput. Sci. Coll., vol.
19, no. 4, pp. 52–60, 2004, Accessed: Apr. 21, 2025. [Online]. Available:
https://raptor.martincarlisle.com/raptor_paper.doc

[93] A. Scott, Using Flowcharts, Code and Animation for Improved Comprehension
and Ability in Novice Programming, Ph.D. dissertation, Univ. of South Wales, 2010.
[Online].Available:
https://pure.southwales.ac.uk/files/991736/Dr_Andrew_Scott_PhD_Thesis.pdf

[94] “RAPTOR - Flowchart Interpreter.” Accessed: Apr. 22, 2025. [Online]. Available:
https://raptor.martincarlisle.com/

[95] G. Atanasova and P. Hristova, “Flow chart interpreter: an environment for
software animation representation,” in Proceedings of the 4th international
conference conference on Computer systems and technologies e-Learning -



97

CompSysTech ’03, Rousse, Bulgaria: ACM Press, 2003, pp. 453–458. doi:
10.1145/973620.973696.

[96] D. Hooshyar, R. Ahmad, M. Md Nasir, S. Band, and S.-J. Horng, “Flowchart-
Based Programming Environments for Improving Comprehension and Problem-
Solving Skill of Novice Programmers: A Survey,” Int. J. Adv. Intell. Paradig., vol. 7,
Nov. 2014, doi: 10.1504/IJAIP.2015.070343.

[97] M. Andrzejewska and A. Stolińska, “Do Structured Flowcharts Outperform
Pseudocode? Evidence From Eye Movements,” IEEE Access, vol. 10, pp. 132965–
132975, Dec. 2022, doi: 10.1109/ACCESS.2022.3230981.

[98] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A Realistic Empirical Evaluation of
the Costs and Benefits of UML in Software Maintenance,” IEEE Trans. Softw. Eng.,
vol. 34, no. 3, pp. 407–432, May 2008, doi: 10.1109/TSE.2008.15.

[99] C. Cabo, Effectiveness of Flowcharting as a Scaffolding Tool to Learn Python.
2018, p. 7. doi: 10.1109/FIE.2018.8658891.

[100] S. Xinogalos, Using Flowchart-based Programming Environments for
Simplifying Programming and Software Engineering Processes. 2013. doi:
10.1109/EduCon.2013.6530276.

[101] R. Neild, “Common Guidelines for Education Research and Development”.
[102] R. Rosenthal, Meta-Analytic Procedures for Social Research. 2455 Teller

Road, Thousand Oaks California 91320 United States of America: SAGE
Publications, Inc., 1991. doi: 10.4135/9781412984997.

[103] D. Moreau and K. Wiebels, “Ten simple rules for designing and conducting
undergraduate replication projects,” PLOS Comput. Biol., vol. 19, no. 3, p.
e1010957, Mar. 2023, doi: 10.1371/journal.pcbi.1010957.

[104] C. F. Camerer et al., “Evaluating the replicability of social science experiments
in Nature and Science between 2010 and 2015,” Nat. Hum. Behav., vol. 2, no. 9,
pp. 637–644, Aug. 2018, doi: 10.1038/s41562-018-0399-z.

[105] Committee on Reproducibility and Replicability in Science et al., Reproducibility
and Replicability in Science. Washington, D.C.: National Academies Press, 2019,
p. 25303. doi: 10.17226/25303.

[106] O. S. Gómez, N. Juristo, and S. Vegas, Replications types in experimental
disciplines. 2010. doi: 10.1145/1852786.1852790.

[107] Open Science Collaboration, “Estimating the reproducibility of psychological
science,” Science, vol. 349, no. 6251, p. aac4716, Aug. 2015, doi:
10.1126/science.aac4716.

[108] C. Chambers, The Seven Deadly Sins of Psychology: A Manifesto for Reforming
the Culture of Scientific Practice. Princeton University Press, 2019. Accessed: Apr.
21, 2025. [Online]. Available: https://www.perlego.com/book/859652/the-seven-
deadly-sins-of-psychology-a-manifesto-for-reforming-the-culture-of-scientific-
practice-pdf

[109] B. A. Nosek and T. M. Errington, “Making sense of replications,” eLife, vol. 6, p.
e23383, Jan. 2017, doi: 10.7554/eLife.23383.

[110] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern
code review,” in 2013 35th International Conference on Software Engineering
(ICSE), San Francisco, CA, USA: IEEE, May 2013, pp. 712–721. doi:
10.1109/ICSE.2013.6606617.

[111] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv., vol. 45,
no. 1, pp. 1–61, Nov. 2012, doi: 10.1145/2379776.2379787.



98

[112] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering. Berlin, Heidelberg: Springer, 2024. doi:
10.1007/978-3-662-69306-3.

[113] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, Third edition. Cambridge, Massachusetts London, England: MIT Press,
2009.

[114] N. Peitek et al., “Correlates of programmer efficacy and their link to experience:
a combined EEG and eye-tracking study,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Singapore Singapore: ACM, Nov. 2022, pp. 120–131. doi:
10.1145/3540250.3549084.

[115] J. Siegmund and J. Schumann, “Confounding parameters on program
comprehension: a literature survey,” Empir. Softw. Eng., vol. 20, no. 4, pp. 1159–
1192, Aug. 2015, doi: 10.1007/s10664-014-9318-8.

[116] M. Cauchoix et al., “The repeatability of cognitive performance: a meta-
analysis,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, no. 1756, p. 20170281, Aug.
2018, doi: 10.1098/rstb.2017.0281.

[117] G. Moreno, “Mook, Douglas.G. (1996). Motivation: The Organization of Action.
Nueva York: Norton.,” Rev. Psicol., vol. 20, pp. 156–159, Jun. 2002, doi:
10.18800/psico.200201.008.

[118] R. B. Cattell, Abilities: their structure, growth, and action. Boston, Mass.:
Houghton Mifflin, 1971.

[119] D. Feitelson, Considerations and Pitfalls in Controlled Experiments on Code
Comprehension. 2021, p. 117. doi: 10.1109/ICPC52881.2021.00019.

[120] M. Lichtman, Qualitative Research in Education: A User’s Guide, 4th ed. New
York: Routledge, 2023. doi: 10.4324/9781003281917.

[121] C. Sun, S. Yang, and B. Becker, “Debugging in Computational Thinking: A Meta-
analysis on the Effects of Interventions on Debugging Skills,” J. Educ. Comput.
Res., vol. 62, no. 4, pp. 867–901, Jul. 2024, doi: 10.1177/07356331241227793.

[122] M. P. O’Brien, “Software Comprehension – A Review & Research Direction”.
[123] “manual-tobii-pro-x3-120_23122019.pdf.” Accessed: Apr. 25, 2025. [Online].

Available: https://www.staff.universiteitleiden.nl/binaries/content/assets/sociale-
wetenschappen/faculteitsbureau/solo/research-support-
website/equipment/manual-tobii-pro-x3-120_23122019.pdf

[124] “Tobii Customer Portal.” Accessed: Apr. 22, 2025. [Online]. Available:
https://connect.tobii.com

[125] “Dry EEG Headset | Quick-20r,” CGX. Accessed: Apr. 25, 2025. [Online].
Available: https://www.cgxsystems.com/quick-20r-v2

[126] R. S. Hessels, D. C. Niehorster, C. Kemner, and I. T. C. Hooge, “Noise-robust
fixation detection in eye movement data: Identification by two-means clustering
(I2MC),” Behav. Res. Methods, vol. 49, no. 5, pp. 1802–1823, Oct. 2017, doi:
10.3758/s13428-016-0822-1.

[127] “Home — PsychoPy v2025.1.0.” Accessed: Apr. 22, 2025. [Online]. Available:
https://www.psychopy.org/

[128] “SoSci Survey ‣ Onlinebefragung, DSGVO-konform, deutsches Unternehmen.”
Accessed: Apr. 22, 2025. [Online]. Available: https://www.soscisurvey.de/

[129] U. Herwig, P. Satrapi, and C. Schönfeldt-Lecuona, “Using the International 10-
20 EEG System for Positioning of Transcranial Magnetic Stimulation,” Brain
Topogr., vol. 16, pp. 95–9, Feb. 2003, doi:
10.1023/B:BRAT.0000006333.93597.9d.



99

[130] B. Coffman et al., Using independent components analysis (ICA) to remove
artifacts associated with transcranial direct current stimulation (tDCS) from
electroencephalography (EEG) data: A comparison of ICA algorithms, vol. 7. 2013.
doi: 10.1016/j.brs.2014.01.025.

[131] M. Ullsperger and S. Debener, “Simultaneous EEG and fMRI : Recording,
Analysis, and Application,” Apr. 2010, doi:
10.1093/acprof:oso/9780195372731.001.0001.

[132] A. Widmann, E. Schröger, and B. Maess, “Digital filter design for
electrophysiological data – a practical approach,” J. Neurosci. Methods, vol. 250,
pp. 34–46, Jul. 2015, doi: 10.1016/j.jneumeth.2014.08.002.

[133] “Why Many Psychology Studies Fail to Replicate,” Verywell Mind. Accessed:
Apr. 27, 2025. [Online]. Available: https://www.verywellmind.com/what-is-
replication-2795802

[134] “Threats of a Replication Crisis in Empirical Computer Science –
Communications of the ACM.” Accessed: Apr. 28, 2025. [Online]. Available:
https://cacm.acm.org/research/threats-of-a-replication-crisis-in-empirical-
computer-science/


